

DEPARTMENT OF CIVIL ENGINEERING

1.1.1 CURRICULUM PLANNING AND IMPLEMENATION

S.No	CONTENTS	PAGE NO
	INSTITUTE LEVEL	
1.	Academic Calendar	2
2.	Overall Timetable Preparation-Guidelines	10
	DEPARTMENT LEVEL	
3.	Subject Allocation Circular, Staff Willingness, Competency Matrix	11
4.	Staff Workload	15
5.	Subject Allocation Class wise	16
	COURSE FILE	
6.	Course Plan	19
7.	Question Bank	31
8.	Student Name List	69
9.	Individual Timetable	71
10.	Internal Assessment Question Paper, Answer Key, Answer Scripts & Mark Statement	72
11.	Remedial Measures - Class Tests, Revision Tests	114
12.	Sample Assignments , PCE Activity	149
13.	NPTEL Session Report	201
14.	CBS Session Report	203
15.	Review Sheet	208
16.	Anna University Question Paper	209
17.	Test report	213

K: X/00er

IQAC COORDINATOR

Dr. K. Abhirami IQAC Coordinator Kings College of Engineering (Autonomous) Punalkulam - 613 303 J. March .

PRINCIPAL

Principal
Kings College of Engineering
(Autonomous)
Punalkulam - 613 303

Academic Calendar Academic Year 2023-2024 (Odd Semester) - III Year UG (Regulations 2021)

JULY 2023 & AUGUST 2023

DATE	DAY	Events	Cum. W/D
27.07.23	Thursday	Commencement of Classes for III Year UG	1
28.07.23	Friday		2
29.07.23	Saturday	Muharram - Holiday	-
31.07.23	Monday		3
01.08.23	Tuesday		4
02.08.23	Wednesday	Staff Council Meeting	5
03.08.23	Thursday	Class Committee Meeting I for III Year UG	6
04.08.23	Friday		7
05.08.23	Saturday	Working day	8
07.08.23	Monday	Submission of CCM-I Minutes & Action taken report to Principal by HODs	9
08.08.23	Tuesday		10
09.08.23	Wednesday		11
10.08.23	Thursday	Submission of DRM Minutes by HODs to IQAC Coordinator	12
11.08.23	Friday		13
12.08.23	Saturday	Working day	14
14.08.23	Monday	Submission of Status of distribution of learning materials to students	15
15.08.23	Tuesday	Independence Day - Flag Hoisting Ceremony	-
16.08.23	Wednesday	Submission of DRC Meeting Minutes by DRC Convener to Principal	16
17.08.23	Thursday	IQAC Meeting	17
18.08.23	Friday		18
19.08.23	Saturday	Holiday	-
21.08.23	Monday	Submission of IQAC Meeting Minutes by IQAC Coordinator to Principal	19
22.08.23	Tuesday		20
23.08.23	Wednesday		21
24.08.23	Thursday		22
25.08.23	Friday	Last Date for Payment of Fees	23
26.08.23	Saturday	Working day	24
28.08.23	Monday	Staff Appraisal Feed Back Collection - III Year UG	25
29.08.23	Tuesday		26
30.08.23	Wednesday		27
31.08.23	Thursday		28

NO. OF WORKING DAYS: 03+25

<u>Academic Calendar Academic Year 2023-2024 (Odd Semester) – III Year UG (Regulations 2021)</u> SEPTEMBER 2023

DATE								
01.09.23	Friday		29					
02.09.23	Saturday	Holiday	-					
04.09.23	Monday	Class Committee Meeting II for III Year UG	30					
05.09.23	Tuesday	- Teachers' Day - Submission of Assignment I Status & Syllabus Completion Report to Principal by HODs - III Year UG	31					
06.09.23	Wednesday	Krishna Jayanthi - Holiday	-					
07.09.23	Thursday	- Staff Council Meeting - Revision classes Commences (Phase I) for III Year UG - Submission of CAT I Question Papers to CCE Office – III Year UG	32					
08.09.23	Friday	Submission of CCM-II Minutes & Action taken report to Principal by HODs	33					
09.09.23	Saturday	- Working day - Revision classes Ends (Phase I) for III Year UG	34					
11.09.23	Monday	- Submission of DRM Minutes by HODs to IQAC Coordinator - Continuous Assessment Test I Commences for III Year UG	35					
12.09.23	Tuesday		36					
13.09.23	Wednesday		37					
14.09.23	Thursday		38					
15.09.23	Friday	- Engineer's Day - Submission of DRC Meeting Minutes by DRC Convener to Principal	39					
16.09.23	Saturday	- Working day - Continuous Assessment Test I Ends for III Year UG	40					
18.09.23	Monday		41					
19.09.23	Tuesday		42					
20.09.23	Wednesday	 Submission of Continuous Assessment Test I Result Analysis by HODs Submission of CAT I Answer Scripts to CCE office - III Year UG Counseling I for III Year UG 	43					
21.09.23	Thursday	- IQAC Meeting - Review Meeting With Principal	44					
22.09.23	Friday	Report Submission of Counseling I by Coordinator – III Year UG	45					
24.09.23	Saturday	Holiday	-					
25.09.23	Monday	Submission of IQAC Meeting Minutes by IQAC Coordinator to Principal	46					
26.09.23	Tuesday		47					
27.09.23	Wednesday	National Level Technical Symposium - CSE, ECE & EEE Department	48					
28.09.23	Thursday	Milad-un-Nabi - Holiday	-					
29.09.23	Friday	National Level Technical Symposium - CIVIL & Mechanical Department	49					
30.09.23	Saturday	- Working day - Parents Teachers Meeting	50					

NO. OF WORKING DAYS: 22

Academic Calendar Academic Year 2023-2024 (Odd Semester) - III Year UG (Regulations 2021)

OCTOBER 2023

DATE	DAY	Events	Cum. W/D
02.10.23	Monday	Gandhi Jayanthi - Holiday	-
03.10.23	Tuesday		51
04.10.23	Wednesday	Staff Council Meeting	52
05.10.23	Thursday	Class Committee Meeting III for III Year UG	53
06.10.23	Friday		54
07.10.23	Saturday	Working day	55
09.10.23	Monday	Submission of CCM-III Minutes & Action taken report to Principal by HODs	56
10.10.23	Tuesday	Submission of DRM Minutes by HODs to IQAC Coordinator	57
11.10.23	Wednesday		58
12.10.23	Thursday		59
13.10.23	Friday		60
14.10.23	Saturday	Holiday	-
16.10.23	Monday	Submission of DRC Meeting Minutes by DRC Convener to Principal	61
17.10.23	Tuesday		62
18.10.23	Wednesday		63
19.10.23	Thursday	IQAC Meeting	64
20.10.23	Friday		65
21.10.23	Saturday	- Working day - Submission of IQAC Meeting Minutes by IQAC Coordinator to Principal	66
23.10.23	Monday	Ayutha Pooja - Holiday	-
24.10.23	Tuesday	Vijaya Dasami - Holiday	-
25.10.23	Wednesday	Submission of Assignment II Status & Syllabus Completion Report to Principal by HODs - III Year UG	67
26.10.23	Thursday	- Submission of CAT II Question Papers to CCE Office - III Year UG - Revision classes Commences (Phase II) for III Year UG	68
27.10.23	Friday		69
28.10.23	Saturday	- Working day - Revision classes Ends (Phase II) for III Year UG - Counseling II for III Year UG	70
30.10.23	Monday	Continuous Assessment Test II Commences for III Year UG	71
31.10.23	Tuesday	Report Submission of Counseling II by Coordinator – III Year UG	72

NO. OF WORKING DAYS: 22

Academic Calendar Academic Year 2023-2024 (Odd Semester) - III Year UG (Regulations 2021)

NOVEMBER 2023

DATE	DAY	Events	Cum. W/D
01.11.23	Wednesday	Staff Council Meeting	73
02.11.23	Thursday		74
03.11.23	Friday		75
04.11.23	Saturday	- Working day	76
		- Continuous Assessment Test II Ends for III Year UG	
06.11.23	Monday	Model Practical Examinations	77
07.11.23	Tuesday	- Model Practical Examinations - Submission of Model Exam Question Papers to CCE Office - III Year UG	78
08.11.23	Wednesday	 - Model Practical Examinations - Submission of Continuous Assessment Test II Result Analysis by HODs - Submission of CAT II Answer Scripts to CCE office - III Year UG 	79
09.11.23	Thursday	- Model Exam: Theory 1 for III Year UG - Review Meeting With Principal	80
10.11.23	Friday	- Submission of DRM Minutes by HODs to IQAC Coordinator - Model Exam: Theory 2 for III Year UG	81
11.11.23	Saturday	Holiday	-
13.11.23	Monday	Model Exam: Theory 3 for III Year UG	82
14.11.23	Tuesday	Model Exam: Theory 4 for III Year UG	83
15.11.23	Wednesday	 Submission of DRC Meeting Minutes by DRC Convener to Principal Model Exam: Theory 5 for III Year UG 	84
16.11.23	Thursday	Model Exam: Theory 6 for III Year UG, IQAC Meeting	85
17.11.23	Friday	Last Working day	86
18.11.23	Saturday	 - Working day - Submission of IQAC Meeting Minutes by IQAC Coordinator to Principal - Submission of Subject Allocation Report for next semester 	
20.11.23	Monday	Commencement of Practical Examinations	
21.11.23	Tuesday	- Submission of Model Exam Result Analysis by HODs - III Year UG - Submission of Model Exam Answer Scripts to CCE office	
22.11.23	Wednesday	Review Meeting With Principal	
23.11.23	Thursday	Internal File Audit Commences	
24.11.23	Friday		
25.11.23	Saturday	Holiday	
27.11.23	Monday		
28.11.23	Tuesday		
29.11.23	Wednesday	Commencement of End Semester Examinations	
30.11.23	Thursday	 Internal File Audit Ends Submission of Department activities completion report & PAC completion report 	
		- Last Date for submission of LM, QB for next semester	

NO. OF WORKING DAYS: 14 + 10

J. Provide 1/2023

PRINCIPAL

Copy to:

Secretary, VP, HODs, AO, DW-Hostels, Transport, Canteen, HS-GH

<u>Academic Calendar Academic Year 2023-2024 (Odd Semester) - IV Year UG (Regulations 2017)</u>

JULY 2023 & AUGUST 2023

DATE	DAY	Events	Cum. W/D
27.07.23	Thursday	Commencement of Classes for IV Year UG	1
28.07.23	Friday		2
29.07.23	Saturday	Muharram - Holiday	-
31.07.23	Monday		3
01.08.23	Tuesday		4
02.08.23	Wednesday	Staff Council Meeting	5
03.08.23	Thursday	Class Committee Meeting I for IV Year UG	6
04.08.23	Friday		7
05.08.23	Saturday	Working day	8
07.08.23	Monday	Submission of CCM-I Minutes & Action taken report to Principal by HODs	9
08.08.23	Tuesday		10
09.08.23	Wednesday		11
10.08.23	Thursday	Submission of DRM Minutes by HODs to IQAC Coordinator	12
11.08.23	Friday		13
12.08.23	Saturday	Working day	14
14.08.23	Monday	Submission of Status of distribution of learning materials to students	15
15.08.23	Tuesday	Independence Day - Flag Hoisting Ceremony	-
16.08.23	Wednesday	Submission of DRC Meeting Minutes by DRC Convener to Principal	16
17.08.23	Thursday	IQAC Meeting	17
18.08.23	Friday	- Staff Appraisal Feed Back Collection - IV Year UG - Submission of CAT I Question Papers to CCE Office - IV Year UG	18
19.08.23	Saturday	Holiday	-
21.08.23	Monday	Submission of IQAC Meeting Minutes by IQAC Coordinator to Principal	19
22.08.23	Tuesday	Submission of Assignment I Status & Syllabus Completion Report to Principal by HODs - IV Year UG	20
23.08.23	Wednesday	Continuous Assessment Test I Commences for IV Year UG	21
24.08.23	Thursday		22
25.08.23	Friday	Last Date for Payment of Fees	23
26.08.23	Saturday	Working day	24
28.08.23	Monday		25
29.08.23	Tuesday	Continuous Assessment Test I Ends for IV Year UG	26
30.08.23	Wednesday		27
31.08.23	Thursday		28

NO. OF WORKING DAYS: 03+25

Academic Calendar Academic Year 2023-2024 (Odd Semester) - IV Year UG (Regulations 2017)

SEPTEMBER 2023

DATE	DAY	Events	Cum. W/D
01.09.23	Friday	- Submission of Continuous Assessment Test I Result Analysis by HODs - Submission of CAT I Answer Scripts to CCE office - IV Year UG	29
02.09.23	Saturday	Holiday	-
04.09.23	Monday	Review Meeting With Principal	30
05.09.23	Tuesday	Teachers' Day	31
06.09.23	Wednesday	Krishna Jayanthi - Holiday	-
07.09.23	Thursday	Staff Council Meeting	32
08.09.23	Friday	Class Committee Meeting II for IV Year UG	33
09.09.23	Saturday	Working day - Counseling I for IV Year UG	34
11.09.23	Monday	Submission of DRM Minutes by HODs to IQAC Coordinator	35
12.09.23	Tuesday	Submission of CCM-II Minutes & Action taken report to Principal by HODs	36
13.09.23	Wednesday	Report Submission of Counseling I by Coordinator – IV Year UG	37
14.09.23	Thursday	Submission of CAT II Question Papers to CCE Office – IV Year UG	38
15.09.23	Friday	- Engineer's Day - Submission of DRC Meeting Minutes by DRC Convener to Principal	39
16.09.23	Saturday	 - Working day - Submission of Assignment II(PCE Activities) Status & Syllabus Completion Report to Principal by HODs - IV Year UG 	40
18.09.23	Monday	Continuous Assessment Test II Commences for IV Year UG	41
19.09.23	Tuesday		42
20.09.23	Wednesday		43
21.09.23	Thursday	IQAC Meeting	44
22.09.23	Friday		45
24.09.23	Saturday	Holiday	-
25.09.23	Monday	- Submission of IQAC Meeting Minutes by IQAC Coordinator to Principal - Continuous Assessment Test II Ends for IV Year UG	46
26.09.23	Tuesday		47
27.09.23	Wednesday	National Level Technical Symposium - CSE, ECE & EEE Department	48
28.09.23	Thursday	Milad-un-Nabi - Holiday	-
29.09.23	Friday	National Level Technical Symposium - CIVIL & Mechanical Department - Submission of Continuous Assessment Test II Result Analysis by HODs - Submission of CAT II Answer Scripts to CCE office - IV Year UG	49
30.09.23	Saturday	- Working day - Parents Teachers Meeting	50

NO. OF WORKING DAYS: 22

Academic Calendar Academic Year 2023-2024 (Odd Semester) - IV Year UG (Regulations 2017)

OCTOBER 2023

DATE	DAY	Events	Cum. W/D
02.10.23	Monday	Gandhi Jayanthi - Holiday	-
03.10.23	Tuesday	Review Meeting With Principal	51
04.10.23	Wednesday	Staff Council Meeting	52
05.10.23	Thursday		53
06.10.23	Friday		54
07.10.23	Saturday	Working day	55
09.10.23	Monday		56
10.10.23	Tuesday	Submission of DRM Minutes by HODs to IQAC Coordinator	57
11.10.23	Wednesday	Class Committee Meeting III for IV Year UG	58
12.10.23	Thursday		59
13.10.23	Friday	Submission of CCM-III Minutes & Action taken report to Principal by HODs	60
14.10.23	Saturday	Holiday	-
16.10.23	Monday	Submission of DRC Meeting Minutes by DRC Convener to Principal	61
17.10.23	Tuesday		62
18.10.23	Wednesday	Zeroth Project Review for IV Year UG	63
19.10.23	Thursday	IQAC Meeting	64
20.10.23	Friday	Submission of Zeroth Project Review Report by HODs	65
21.10.23	Saturday	- Working day, Counseling II for IV Year UG - Submission of IQAC Meeting Minutes by IQAC Coordinator to Principal - Submission of Syllabus Completion Report to Principal by HODs – IV Year UG	66
23.10.23	Monday	Ayutha Pooja - Holiday	-
24.10.23	Tuesday	Vijaya Dasami - Holiday	-
25.10.23	Wednesday	Revision classes Commences (Phase I) for IV Year UG	67
26.10.23	Thursday	Report Submission of Counseling II by Coordinator – IV Year UG	68
27.10.23	Friday	Submission of Model Exam Question Papers to CCE Office - IV Year UG	69
28.10.23	Saturday	- Working day - Revision classes Ends (Phase I) for IV Year UG	70
30.10.23	Monday	Model Exam: Theory 1 for IV Year UG	71
31.10.23	Tuesday	Model Exam: Theory 2 for IV Year UG	72

NO. OF WORKING DAYS: 22

Academic Calendar Academic Year 2023-2024 (Odd Semester) - IV Year UG (Regulations 2017)

NOVEMBER 2023

DATE	DAY	Events	Cum. W/D
01.11.23	Wednesday	- Staff Council Meeting - Model Exam: Theory 3 for IV Year UG	73
02.11.23	Thursday	Model Exam: Theory 4 for IV Year UG	74
03.11.23	Friday	Model Exam: Theory 5 for IV Year UG	75
04.11.23	Saturday	Working day, Model Exam: Theory 6 for IV Year UG	76
06.11.23	Monday	Model Practical Examinations	77
07.11.23	Tuesday	Model Practical Examinations	78
08.11.23	Wednesday	 - Model Practical Examinations - Submission of Model Exam Result Analysis by HODs - IV Year UG - Submission of Model Exam Answer Scripts to CCE office 	79
09.11.23	Thursday	Revision classes Commences (Phase II) for IV Year UG	80
10.11.23	Friday	- Submission of DRM Minutes by HODs to IQAC Coordinator - Review Meeting With Principal	81
11.11.23	Saturday	Holiday	-
13.11.23	Monday		82
14.11.23	Tuesday		83
15.11.23	Wednesday	Submission of DRC Meeting Minutes by DRC Convener to Principal	84
16.11.23	Thursday	IQAC Meeting	85
17.11.23	Friday	- Last Working day - Revision classes Ends (Phase II) for IV Year UG	86
18.11.23	Saturday	- Working day - Submission of IQAC Meeting Minutes by IQAC Coordinator to Principal - Submission of Subject Allocation Report for next semester	
20.11.23	Monday	Commencement of Practical Examinations	
21.11.23	Tuesday		
22.11.23	Wednesday		
23.11.23	Thursday	Internal File Audit Commences	
24.11.23	Friday		
25.11.23	Saturday	Holiday	
27.11.23	Monday		
28.11.23	Tuesday		
29.11.23	Wednesday	Commencement of End Semester Examinations	
30.11.23	Thursday	 Internal File Audit Ends Submission of Department activities completion report & PAC completion report Last Date for submission of LM, QB for next semester 	

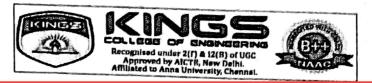
NO. OF WORKING DAYS: 14 + 10

J. Morute 125/7/2023

PRINCIPAL

Copy to:

Secretary, VP, HODs, AO, DW-Hostels, Transport, Canteen, HS-GH.


ACADEMIC YEAR 2023 – 24 ODD SEMESTER GUIDELINES FOR TIMETABLE PREPARATION

- College Timing 9.15 am 4.20 pm / (8 Periods / Week) / (45 min / Period)
- Lecture Hours
 - Maximum 5 to 6 periods allocated for tough Subjects (Credit 4 or Tutorial) and 4 to 5 periods allocated for remaining subjects (Credit 3).
 - Toughest subject is selected by concern HOD based on the results obtained in the previous year.
 - Tutorial / Elective / Theory Cum Practical Subjects must be mentioned in timetable itself.
- Lab Hours
 - Allocate 4 hrs for Credit 2 subjects
 - Allocate 3 hrs for Credit 1.5 subjects (Regulation 2021)
 - Allocate 2 hrs for Credit 1 subjects
- As per the instructions given by Tamilnadu Government and Anna University, Thursday will be utilized for Naan Mudalvan Course.
- Allocate 2 hours/ week for physical grooming (Yoga and Sports activities)
- Excess Hours can be utilized by their concern HoD instructions,
 - Allocate 1 period for NPTEL/Swayam for all year
 - o II Year any Certification courses (online / offline) 1 or 2 periods / Week
 - o III Year
 - GATE Coaching & Competitive Exam coaching 1 or 2 periods / Week
 - Any Certification courses (online / offline) 1 or 2 periods / Week
 - o IV Year
 - Industry Ready Training 2 or 3 Periods/week
 - Saturday will be utilized for Project work
 - Give more attention towards value addition initiative practices
- Training & Placement Hour
 - Allocate 2 periods / week to all department students.
 - o for all year
 - Soft Skill 1 period / Week
 - Aptitude 1 period / Week
- Tentative Last Working Day (Specified by Anna University) will be included in Timetable format.

OVERALL TIMETABLE COORDINATOR

J. Mary 12023

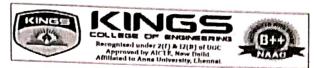
PRINCIPAL

DEPARTMENT OF CIVIL ENGINEERING ACADEMIC YEAR 2023 – 2024 (ODD SEMESTER) SUBJECT ALLOCATION - CIRCULAR

DATE: 23.06.2023

The Subject Allocation meeting for the Academic Year 2023 – 2024 (Odd Semester) is scheduled to be conducted on **26.06.2023** by **10.00** AM at **Dept.Library**. All the faculty members are asked to attend the meeting without fail. The subjects list is attached with this circular for reference.

8 · 5 an 23 | 06 | 2083



Department of Civil Engineering ACADEMIC YEAR 2023- 2024 (ODD SEMESTER) SUBJECT ALLOCATION WILLINGNESS FORM

23.06.2023

						23.06.2023
S No	STAFF NAME	SUB	YEAR/SEM	SUB.CODE	SUB.NAME	Staff Sign
		T 1	17/1	OEN751	Green Building Design	5
	1 Dr.R.Saravanan		11/2	CE 3025	Arrport and Herbury	23/06/2
1	Dr.R.Saravanan	Т3	, -		•	
		L1	IV /VII	CE 8711	Creatine and Innombre priject	• •
	_	L 2			79	n.
		T 1	[V / VI)	CE8703	Structural Design and Construction Materials and	
		Т2	010	C£3302		8°
2	Mr. R.Sundharam	Т3	四五		Airport and Herborn	8. X
		L 1	111 1	CE 3512	Survey comp	23/6/1
		L 2	[h 1]	CE 3511	Hishmay Figs lab	
-	1 2 th	T 1	111 /v	CE3502	Structual Analysia I	
	A-3	Т2	[v/vii	CE 8 701	ECV E	
3	Mr.K.Arun	Т3		ME 3351	EM	23/6/23
		L1	TV /VII	CE8711	Creative & Immostive Project	23/0/23
0		L 2	11/2	CE3512	Survey Camp	
	1	Т 1	山瓜	C.E3303	Water and Whate Water Engineering	
	i, Bi . i 4	Т2	回し		Airport and Hoslows	<i>b</i>
4	Mr.R.Ramchandar	Т3	四/vii	CE8702	Radword, Airports, Docks and Hostovor Engineering	R Part 23/6/1
	44	L1	19/VII .	CE 8712	Industrial Training	
S.	® (grade transfer tr	L 2	四/~	CE 3512	Sveney Camp	H Common
		Т 1	四月前	ME3351	Engineering Mechanics.	
		Т 2	12/10	CE8702	Roulways, Attrovers, Doctor and	1/1
5	Mr.D.Nandakumar	Т 3	国人		Rehabilitation / Horriage Restrorate	D. North
Wille		L 1	亚/ >	CE 3511	Highway Engineering Laboratory.	
		L 2	五匝	CE3311	holder and want e water Analysis Laboratory	

Department of Civil Engineering ACADEMIC YEAR 2023-2024 (ODD SEMESTER) SUBJECT ALLOCATION WILLINGNESS FORM

S No	STAFF NAME	SUB	VEAD /CEM	gun gana		23.06.2023	
		305	YEAR/SEM	SUB.CODE	SUB.NAME	Staff Sign	
6	s.	T 1	11/10	CE3302	Construction materials and sechnology.		
		T 2	TI/V	CF3503		20 mary	
6	Ms.A.Suganya	Т3	型区	CE3502	Structural Analysis-I	Bryant	
		L1	四位	CE3511	High way lab.		
		L 2	四/亚	CE 3512.	Surveycomp		
		Т1	5/II	CE3301	Fluid Machanics		
		Т 2	亚/区	CE3501	posign of Reinforced concente estructural elements	× 8	
7	Mr.A.Sagaya Albert	Т3	I/T	CF 330&	construction Maberials and	Sealing St. Was	
	4	L 1	I/111	CE 3361	Surveying and levelling	Pall	
	1	L 2	亚/女	CF 3512	Survey camp.		
	111111111111111111111111111111111111111	T 1	IV/VII	(E&70)	0	Ī	
		T 2	I	CE3303	Schimation, costing and Valuation water supply and wastrunter		
8	Ms.P.Kavimuhil	Т3	11/111	CE 3311	water supply and wastewater lab		
		L1	II/I	LF 35 11	Highway lab	26/6/23	
		L 2	面/工	CE3025	Airport and Harban.	, - ·	

SUBJECT ALLOCATION INCHARGE

HOD/CIVIL

DEPARTMENT OF CIVIL ENGINEERING ACADEMIC YEAR 2023 – 2024 (ODD SEMESTER) COMPETENCY MATRIX FOR SUBJECT ALLOCATION

26.06.2023

		III SEM					V SEM							VII SEM						
S.No	Staff Name	ME3351 - EM	CE3301 - FM	CE3302 - CMT	CE3303 - WWE	CE3351 - SUR	CE3311 - WWE LAB	CE3361 - SUR LAB	CE3501 - DRCCE	CE3502 - SA I	CE3503 - FE	CE3005 - RHR	CE3025 - AAH	CE3050 - FFE	CE3512 - HE LAB	CE8701 - ECVE	CE8702 - RADHE	CE8703 - SDD	OEN751 - GBD	CE8711 · CIP
1	Dr.R.Saravanan												*						***	***
2	Mr. R.Sundharam			XX									*		44			杂火车		
3	Mr.K.Arun	**								***				rī		AF				**
4	Mr.S.Kamaraj																			
5	Mr.R.Ramchandar					8							*				**		13	1
6	Mr.D.Nandakumar	**					Ж								St.		**			
7	Ms.A.Suganya			* 82						*	*				**					
8	Ms.P.Kavimugil		U 40		*		*		e 17							**				
9	Mr.A.Sagaya Albert		* *		ÿ∕.			*	**							÷1.				

* Willing

** Capable of Handling

*** Expertise

PREPARED BY

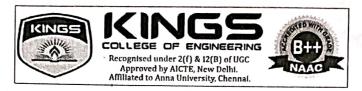
(Mr.ARUN.K, AP/ CIVIL)

APPROVED BY
(Dr.R.SARAVANAN, HOD/ CIVIL)

Department of Civil Engineering ACADEMIC YEAR 2023 – 2024 (ODD SEMESTER) - SUBJECT ALLOCATION

Sl. No.	STAFF NAME	NAME OF THE SUBJECTS	YEAR/SEM	OTHER RESPONSIBILITIES
1	Dr.R.Saravanan	T1: OEN751 - Green Building design	IV / VII	* HOD /C::1
1	DI.R.Sal avallali	L1: CE8711- Creative and Innovative Project	IV / VII	* HOD/Civil
2	Mr. R.Sundharam	T1: CE8703 - Structural Design and Drawing	IV / VII	* IV Yr CC *Dy.Coordinator of Examinations *Alumni Coordinator *Dept.Library Incharge *Discipline Incharge
2	Wi. K.Sununarani	T2: CE3005 - Rehabilitation/Heritage Restoration	III / V	*FAA member *IIC member *Class Committe Chairperson *ToT-Naan Mudhalvan
3	Mr.K.Arun	T1: CE3502 - Structural Analysis I	III / V	* III Yr CC *PAC Member *IQAC Member *LO Coordinator *Subject Allocation Incharge
3		L1: CE8711- Creative and Innovative Project	IV / VII	*Dept. EDUMATE Coordinator *Class Committe Chairperson *Dept.Submissions * ToT-Naan Mudhalvan
		T1: CE3025 - Airports and Harbours	III / V	*Timetable Coordinator *IHT Coordinator
4	Mr.R.Ramchandar	T2: CE3351 - Surveying and Levelling	II / III	*MOU Coordinator *Dept. Budget Incharge
		L1: CE3361 - Surveying and levelling Laboratory	II / III	*Dept. Estate office member *Class Committe Chairperson
_	W 5 V 11	T1: ME3351 - Engineering Mechanics	II / III	* II Yr CC *DRC Member
5	Mr.D.Nandakumar	T2: CE8702 - Railways, Airports, Docks and Harbour Engineering	IV / VII	*Placement Coordinator *ISTE Coordinator * ToT-Naan Mudhalvan
		T1: CE3503 - Foundation Engineering	III / V	*Class committee Coordinator
6	Ms.A.Suganya	T2: CE3302 - Construction Materials and Technology	II / III	*Counselling Coordinator
		L1: CE3511 - Highway Engineering Laboratory	III / V	*BE Club Incharge
		T1: CE3501 - Design of Reinforced Concrete Structural Elements	III / V	* CATE coordinates
7	Mr.A.Sagaya Albert	T2: CE3301 - Fluid Mechanics	II / III	* GATE coordinator *PTA Coordinator
		L1: CE3361 - Surveying and levelling Laboratory	II / III	*Kings Times Coordinator
		T1: CE8701 - Estimation, Costing and Valuation Engineering	IV / VII	*SCC Coordinator
8	Ms.P.Kavimuhil	T2: CE3303 - Water and Waste Water Engineering	II / III	*Co-Curricular actvivities
		L1: CE3311 - Water and Waste Water Analysis Laboratory	II / III	Coordinator

: 15


: 04

Total No. of Theory Subjects Total No. of Laboratories

Department of Civil Engineering ACADEMIC YEAR 2023 - 2024 (ODD SEMESTER)

Sl. No.	SEM	SUB. CODE	NAME OF THE SUBJECT	STAFF NAME
T1	VII	CE8701	Estimation, Costing and Valuation Engineering	Ms.P.Kavimuhil
T2	VII	CE8702	Railways, Airports, Docks and Harbour Engineering	Mr.D.Nandakumar
Т3	VII	CE8703	Structural Design and Drawing	Mr. R.Sundharam
T4	VII	0EN751	Green Building design	Dr.R.Saravanan
Т5	V	CE3501	Design of Reinforced Concrete Structural Elements	Mr.A.Sagaya Albert
Т6	V	CE3502	Structural Analysis I	Mr.K.Arun
Т7	V	CE3503	Foundation Engineering	Ms.A.Suganya
Т8	V	CE3005	Rehabilitation/Heritage Restoration	Mr. R.Sundharam
Т9	V	CE3025	Airports and Harbours	Mr.R.Ramchandar
T10	V	CE3050	Finance for Engineers	Dr.K.Sudhakar
L2	V	CE3511	Highway Engineering Laboratory	Ms.A.Suganya
T11	III	ME3351	Engineering Mechanics	Mr.D.Nandakumar
T12	III	CE3301	Fluid Mechanics	Mr.A.Sagaya Albert
T13	III	CE3302	Construction Materials and Technology	Ms.A.Suganya
T14	III	CE3303	Water and Waste Water Engineering	Ms.P.Kavimuhil
T15	III	CE3351	Surveying and Levelling	Mr.R.Ramchandar
L3	III	CE3361	Surveying and levelling Laboratory	Mr.R.Ramchandar/ Mr.A.Sagaya Albert
L4	III	CE3311	Water and Waste Water Analysis Laboratory	Ms.P.Kavimuhil

DEPARTMENT OF CIVIL ENGINEERING

ACADEMIC YEAR: 2023-24 / ODD SEM

CE3502-STRUCTURAL ANALYSIS I

YEAR/SEM: III / V

COURSE FILE

STAFF INCHARGE
K.ARUN / AP CIVIL

DEPARTMENT OF CIVIL ENGINEERING ACADEMIC YEAR (2023 – 2024) ODD SEMESTER COURSE FILE - CONTENT PAGE

YEAR/SEC/SEM: \(\overline{\mathbb{T}} \setminus \overline{\mathbb{T}}

SUBJECT CODE: CE3502

REGULATION: 2021

BATCH: 2021-2025

SUBJECT NAME: STRUCTURAL ANALYSIS I

STAFF IN-CHARGE: K. ARUN, AF CIVIL

- * Syllabus
- * Course Plan
- * Question Bank
- * Student Name list
- * Individual Timetable
- * Unitwise Notes
- * Internal Assessment Question Paper, Answer key
- * Sample Assessment Papers
- * Internal Assessment Mark Statement
- * Support to Slow learner
 - > Slow Learners list
 - > Remedial class plan & Attendance
 - > Supporting Documents
- * Support to Advanced learner
 - > Advanced Learners list
 - > Promotional Activity details
 - > Supporting Documents
- * Format A (For Assignments)
- * Sample Assignments
- * Format B (For Content Beyond Syllabus)
- * University Question Papers
- * Review Sheet
- * Test Report (Covering Corrective, Preventive action)

DEPARTMENT OF CIVIL ENGINEERING

SUBJECT: STRUCTURAL ANALYSIS I

YEAR/SEM: III/V

QUESTION BANK (CE3502) (Version: 1)

PREPARED BY
Mr.K.ARUN, AP / CIVIL

CE3502

STRUCTURAL ANALYSIS I

LTPC 3003

UNIT I ANALYSIS OF TRUSSES

9

Determinate and indeterminate trusses - analysis of determinate trusses - method of joints - method of sections - Deflections of pin-jointed plane frames - lack of fit - change in temperature method of tension coefficient - Application to space trusses.

UNIT II SLOPE DEFLECTION METHOD

9

Slope deflection equations - Equilibrium conditions - Analysis of continuous beams and rigid frames - Rigid frames with inclined members - Support settlements - Symmetric frames with symmetric and skew - symmetric loadings.

UNIT III MOMENT DISTRIBUTION METHOD

9

Stiffness - Distribution and carryover factors- Analysis of continuous Beams - Plane rigid frames with and without sway- Support settlement - symmetric frames with symmetric and Skew - symmetric loadings.

UNIT IV FLEXIBLITY METHOD

Q

Primary structures - Compatibility conditions - Formation flexibility matrices - Analysis of indeterminate pin- jointed plane frames, continuous beams and rigid jointed plane frames by direct flexibility approach.

UNIT V STIFFNESS METHOD

9

Restrained structure -Formation of stiffness matrices - equilibrium condition- Analysis of Continuous Beams - Pin-jointed plane frames and rigid frames by direct stiffness method.

TOTAL: 45 PERIODS

STAFF INCHARGE Mr.K.ARUN HOD/CIVIL Dr.R.SARAVANAN

DEPARTMENT OF CIVIL ENGINEERING COURSE PLAN

Sub. Code : CE3502

Branch / Year / Sem : B.E CIVIL /III/V

Sub.Name : Structural Analysis I

Batch : 2021-2025

Staff Name : Mr.K.Arun

Academic Year : 2023-24 (ODD)

COURSE OBJECTIVE

 To introduce the students to the basic theory and concepts of classical methods of structural analysis.

TEXT BOOKS:

- T1. Bhavikatti.S.S, Structural Analysis, Vol.1 & 2, Vikas Publishing House Pvt. Ltd., New Delhi-4, 2014.
- T2. Punmia.B.C, Ashok Kumar Jain & Arun Kumar Jain, Theory of structures, Laxmi Publications, New Delhi, 2004.

REFERENCES BOOKS:

R1. Rajput.R.K. "Strength of Materials", S.Chand and Co, New Delhi, 2015.

R2. Bansal. R.K. "Strength of Materials", Laxmi Publications Pvt. Ltd., New Delhi, 2010

R3.Pandit G.S.and Gupta S.P., Structural Analysis – AMatrix Approach, Tata McGraw Hill Publishing Company Ltd., 2006

WEB RESOURCES

W1. https://archive.nptel.ac.in/courses/105/105/105105166/

(Topic No.02)

W2. https://www.brainkart.com/article/Solved-Problems--Slope-Deflection-Method--

Structural-Analysis_4578/

(Topic No.08)

W3.https://learnaboutstructures.com/Slope-Deflection-Method-for-Sway-Frames

(TopicNo.09)

W4. https://www.degreetutors.com/moment-distribution-method/

(Topic.No:14)

W5.https://eng.libretexts.org/Bookshelves/Civil_Engineering/Structural_Analysis_(Udoeyo

 $)/01\%3A_Chapters/1.12\%3A_Moment_Distribution_Method_of_Analysis_of_Structures$

(Topic.No:15)

W6. https://www.brainkart.com/article/Solved-Problems--Structural-Analysis--Flexibility-

Method_4581/

(Topic.No:22)

W7. http://www.facweb.iitkgp.ac.in/~baidurya/CE21004/online_lecture_notes/m4l30.pdf

(Topic.No:25)

Topic No	Topic	Books for Reference	Page No.	Teaching Methodology	No. of Hours Required	Cumulative No. of periods	
UNIT I	ANALYSIS OF TRUSSES						
1	Determinate and indeterminate trusses	R1	992-993	BB/PPT	1-3	1	
2	Analysis of determinate trusses, Method of joints	R1 R2 W1	998-1033 471-484	NPTEL	2	3	
3	Method of sections	R1 R2	1034-1053 492-501	L.VIDEO	2	5	
4	Deflections of pin- jointed plane frames	R2	485-489	ВВ/РРТ	2	7	
5	Lack of fit, Change in temperature method of tension coefficient	R2	489-492	BB/PPT	2	9	
6	Application to space trusses.	R2	501-507	ВВ/РРТ	1	10	

LEARNING OUTCOME

At the end of this unit, students will be able to

- Identify the determinate and indeterminate trusses
- Analyse a determinate truss using method of joints
- Analyse a determinate truss using method of sections

UNIT I	II	SLOPE DEF	LECTION ME	ГНОД		(9+1)
7	Slope deflection equations, Equilibrium conditions	T2	165-168	BB/PPT	2	12
8	Analysis of continuous beams	T2 W2	168-173	L.VIDEO	2	14
9	Analysis of rigid frames	T2 W3	174-177	BB/PPT	2	16
10	Rigid frames with inclined members	Т2	177-192	BB/PPT	2	18
11	Support settlements	T1(Vol.2)	13-16	BB/PPT	1	19
12	Symmetric frames with symmetric and skew-symmetric loadings.	T1(Vol.2)	20-39	вв/РРТ	1	20

LEARNING OUTCOME

At the end of this unit, students will be able to

- Gain knowledge about the analysis of continuous beams by using slope deflection methods
- Understand the analysis of rigid frames
- Understand about support settlements

Topic No	Topic	Books for Reference	Page No.	Teaching Methodology	No. of Hours Required	Cumulative No. of periods		
UNIT III								
13	Stiffness, Distribution and carry over factors	T1(Vol.2)	45-49	BB/PPT	1	21 x		
14	Analysis of continuous Beams	T1(Vol.2) W4	49-60	BB/PPT	2	23		
15	Analysis of Plane rigid frames with sway	T2 W5	223-248	L.VIDEO	2	25		
16	Plane rigid frames without sway	T2	209-223	BB/PPT	2	27		
17	Support settlement, symmetric frames with symmetric loadings	T1(Vol.2)	61-64	BB/PPT	2	29		
18	Skew symmetric loadings	T1(Vol.2)	83-86	BB/PPT	1	30		

LEARNING OUTCOME

At the end of this unit, students will be able to

- Analyse the continuous beams by using moment distribution method.
- Acquire knowledge about plane rigid frames with sway.
- Gain knowledge about plane rigid frames without sway.

UNIT IV	100	FLEXIBLIT	TY METHOD	- m- "	Aliania.	(9+1)
19	Primary structures, Compatibility conditions,	T1(Vol.2)	324-326	BB/PPT	2	32
20	Formation flexibility matrices	T1(Vol.2) R3	327-328 138-139	вв/РРТ	2	34
21	Analysis of indeterminate pin-jointed plane frames	T1(Vol.2) R3	342-350 318-323	L.VIDEO	2	36
22	Analysis of indeterminate continuous beams	T1(Vol.2) W6	330-342	BB/PPT	2	38
23	Analysis of indeterminate rigid jointed plane frames by direct flexibility approach.	R3	373-378	ВВ/РРТ	2	40

LEARNING OUTCOME

At the end of this unit, students will be able to

- Acquire knowledge about flexibility method
- Classify the determinate and indeterminate frames and beams
- Examine the forces in the continuous beams

Topic No	Topic	Books for Reference	Page No.	Teaching Methodology	No. of Hours Required	Cumulative No. of periods
UNIT V		STIFF	NESS METHO	D		(9+1)
24	Restrained structure	T1(Vol.2)	350-351	FV	1	41
25	Formation of stiffness matrices, equilibrium condition	R3 W7	142-143	BB/PPT	2	43
26	Analysis of Continuous Beams	T1(Vol.2)	351-361	L.VIDEO	3	46
27	Analysis of Pin-jointed plane frames	R3	345-362	BB/PPT	2	48
28	Analysis of rigid frames by direct stiffness method.	R3	383-390	ВВ/РРТ	2	50

LEARNING OUTCOME

At the end of this unit, students will be able to

- Define the concept of element and global stiffness matrices
- Understand the transformation of stiffness matrices
- Gain knowledge about analysis of beams and frames by stiffness method

COURSE OUTCOME

At the end of the course, the students will be able to

- Analyze the pin-jointed plane and space frames.
- Analyse the continuous beams and rigid frames by slope defection method.
- Understand the concept of moment distribution and analysis of continuous beams and rigid frames with and without sway.
- Analyse the indeterminate pin jointed plane frames continuous beams and rigid frames using matrix flexibility method.
- Understand the concept of matrix stiffness method and analysis of continuous beams, pin jointed trusses and rigid plane frames.

CONTENT BEYOND THE SYLLABUS

Analysis of beams using strain energy method.

INTERNAL ASSESSMENT DETAILS

ASST. NO.	CAT I	CAT II	MODEL
Topic Nos.	1-15	16-28	1-28
Date			

ASSIGNMENT DETAILS

ASSIGNMENT	Ι	II
Topic Nos. for reference	1 - 15	16-28
Deadline		

	Class Strength : 21			
	ASSIGNMENT: I (40 Marks) (Before Ca	AT – I)		
	Topics for Reference (1-15)			
	Question / Activity / Activities	Evaluation		
	Level-1 (7 Students)			
L1-	Quiz			
(Q1-Q4)	1. Determinate trusses	Total 20 questions.		
	2. Rigid frames	(20*2= 40 Marks)		
	3. Continuous beams			
	4. Frames without sway			
L1-	Seminar	PPT: 15 Marks		
(Q4-Q7)	5. Lack of fit	Presentation: 20 Marks		
	6. Sway conditions	Q&A: 05 Marks		
	7. Analysis of Trusses	Quin ob Hurks		
	Level-2 (7 Students)			
L2-	Application of concepts	Dogonia a level		
(Q8-Q11)	1. Slope deflection method	Reasoning level question 20 With necessary		
	2. Moment distribution method	explanation.		
	3. Tension coefficient method	(20*2=40 Marks)		
	4. Deflection of frames			
L2-	Crossword	Report: 25 Marks		
(Q12-Q14)	5. Slope deflection equations	Q&A: 15 Marks		
	6. Support settlements	QXA. 15 Marks		
	7. Distribution factors			
	Level-3 (7 Students)			
L3-	Poster Presentation			
(Q15-Q18)	1. Types of trusses	Poster Design: 20 Marks		
	2. Types of beams	Explanation: 15 Marks		
	3. Types of loads	Q&A: 5 Marks		
	4. Types of supports	, .		
L3-	GATE Questionnaire			
(Q19-Q21)	5. Method of joints	Total 20 questions.		
	6. Method of sections	(20*2= 40 Marks)		
	7. Analysis of continuous beams			
L3- (Q19-Q21)	4. Types of supports GATE Questionnaire 5. Method of joints 6. Method of sections	Total 20 questi		

	Class Strength : 21	
	ASSIGNMENT: II (40 Marks) (Before	CAT – II)
	Topics for Reference (16-28)	
	Question / Activity / Activities	Evaluation
	Level-1 (7 Students)	
L1- (Q1-Q4)	 Seminar Formation of flexibility matrices Formation of stiffness matrices Primary structures Restrained structures 	PPT: 15 Marks Presentation: 20 Marks Q&A: 05 Marks
L1- (Q4-Q7)	Quiz 5. Rigid jointed plane frames 6. Indeterminate frames 7. Matrix method	Total 20 questions. (20*2= 40 Marks)
	Level-2 (7 Students)	
L2- (Q8-Q11)	1. Symmetric frames 2. Skew symmetric loadings 3. Lack of fit 4. Pin jointed plane frames	Report: 25 Marks Q&A: 15 Marks
L2- (Q12-Q14)	Application of concepts 5. Carryover factor 6. Sway conditions 7. Symmetric loadings	Reasoning level questions 20 With necessary explanation. (20*2=40 Marks)
	Level-3 (7 Students)	
L3- (Q15-Q18)	1. Stiffness method 2. Flexibility method 3. Analysis of trusses 4. Frames with sway and without sway conditions	Total 20 questions. (20*2= 40 Marks)
L3- (Q19-Q21)	Poster Presentation 5. Compatibility conditions 6. Equilibrium conditions 7. Distribution and carryover factors	Poster Design: 20 Marks Explanation: 15 Marks Q&A: 5 Marks

COURSE ASSESSMENT PLAN

СО	CO Description	Weightage	CAT 1	CAT 2	MODEL	ASSIGN -1	ASSIGN -2	AU
CO1	Analyze the pin-jointed plane and space frames.	20%	√		√	√		1
CO2	Analyse the continuous beams and rigid frames by slope defection method.	20%	√	ne Tear	√	√		,
соз	Understand the concept of moment distribution and analysis of continuous beams and rigid frames with and without sway.	20%	- √ - √	√	√	√	√	
CO4	Analyse the indeterminate pin jointed plane frames continuous beams and rigid frames using matrix flexibility method.	20%	-	✓	√		√	
CO5	Understand the concept of matrix stiffness method and analysis of continuous beams, pin jointed trusses and rigid plane frames.			√	√		√	- 1

COURSE OUTCOME ALIGNMENT MATRIX - MODEL EXAM SAMPLE QUESTION SET

Q.No	Question	Marks	со	BTL
1	Differentiate perfect and imperfect frame.	2	CO 1	L2
2	State the principle of virtual displacement.	2	CO 1	L1
3	Distinguish between symmetry and anti-symmetry of structures.	2	CO 2	L2
4	Identify the limitations of slope deflection method.	2	CO 2	L2
5	What is meant by distribution factor?	2	CO 3	L1
6	What are the situations where in sway will occur in portal frames?	2	CO 3	L1
7	Define a primary structure.	2	CO 4	L1
8	Define Flexibility Coefficient	2	CO 4	L1
9	Compare the flexibility and stiffness matrix method.	2	CO 4 CO 5	L2
10	List out the properties of rotation matrix.	2	C05	L2

Q.No	Question	Marks	СО	BTL
11(a)	Analyse the beam loaded as shown in figure by strain energy method and draw the BMD.El is constant.	13	CO 1	L4
	& m B 2 m 2 m B Z m Canatani		*	
11(b)	Analyse the structure shown in figure by strain energy method and sketch the bending moment diagram. 15kN/m 15kN/m 15kN/m 15kN/m 15kN/m 15kN/m	13	CO 1	L4
12(a)	A continuous beam ABCD consists of three span and is loaded as shown in figure. Solve the beam by using slope deflection method and draw BMD. E is constant throughout. SkN SkN SkN SkN SkN A 21 B 21 C 1	13	CO 2	L3
12(b)	Solve the portal frame loaded in figure by the slope deflection method and draw the bending moment diagram. 15kN/m 3m B C EI Constant D	13	CO 2	L3
13(a)	Determine the support moment for the beam shown in figure by moment distribution method and sketch the bending moment diagram. 70 kN 2 m 4 m 4 m 2 m	13	CO 3	L3

			_	
13(b)	Evaluate the beam by moment distribution method shown in	13	CO 3	L3
	figure and sketch the bending moment diagram.		5	-48
	A 3m 3m 2m 4m C		en.	
14(a)	Find the bending moment values for the beam shown in figure	13	CO 4	L1
	by flexibility approach .AE is constant for all members. A kN/m 12 kN 6 m B 2 m 2 m			
14(b)	(i) A two span continuous beam ABC is fixed at A and hinged at supports B and C. Span of AB = span of BC = 13 m. Set up flexibility influence co-efficient matrix assuming vertical reaction at B and C as redundant. (ii) A cantilever of length 20 meters is subjected to a single concentrated load of 45 kN at the middle of the span. Find the deflection at the free end using flexibility matrix method. EI is	13	CO 4	L1
476)	uniform throughout.	13	CO 5	L2
15(a)	Interpret the moments for the beam shown in figure by stiffness matrix method and draw the BMD.	13	003	LL.
-	6 kN 2kN/m 4 m 4 m 600 8 m 600 C			
15(b)	Interpret the frame given in figure by stiffness matrix method.	13	CO 5	L2
	AE is equal to unity.			

16(a)	A continuous beam ABC 24m long is fixed at A, simply supported at B and C. The intermediate support B is at 12m from A and sinks by 30mm. The span AB carries a uniformly distributed load of 3kN/m and the span BC is subjected to a point load of 24 kN at 8m from C. Formulate the beam by moment distribution method and draw the bending moment diagram. Take the flexural rigidity EI as 40,000kN-m² and is constant throughout.	13	CO 3	L4
16(b)	A continuous beam ABC is fixed at A and simply supported at B and C. The span AB is 5m and carries a concentrated bad of 80kN at its mid-span and the span BC is 8m and carries a uniformly distributed bad of 12kN/m. Take the flexural rigidity for portion AB as EI and that for portion BC as 2EI. Adapt slope deflection method & draw the bending moment diagrams.	13	CO 2	L4

ASSESSMENT PAPER QUALITY MATRIX

PART	BTL1	BTL2	BTL3	BTL4	BTL5	BTL6
A	2,5,6,7,8	1,3,4,9,10	_	- T.	L	
В	14 A,B	15 A,B	12 A,B 13 A,B	11 A,B		_
С	1	_	1	16 A,B	- 20	
TOTAL	23	23	26	28		- 4
Distribution 46%		54	%	9	-	

Prepared by

Mr.K.ARUN

Verified By

HOD/CIVIL

Approved by PRINCIPAL

Verified

SA-12.12

KCE/CIVIL/QB/III YR/SA-I

UNIT I ANALYSIS OF TRUSSES PART A

1.	Give an outline on determinate and indeterminate structures.	UNDERSTAND BT-L2	C01
reac	erminate structure: A structure is considered statically determinate tions and member forces can be calculated using only the equations of state eterminate structure: A structure is termed as statically indeterminate,	atic equilibrium.	
	a principles of statics alone, i.e. $\Sigma H = 0$, $\Sigma V = 0$, $\Sigma M = 0$.		,
2.	Define tension coefficient.	REMEMBER BT-L1	CO1
The	force per unit length of a member is known as tension coefficient. It is giv	en by, $T = F/L$	8
whe	re, T is tension coefficient, F is the force and L is length of the member.		
3.	What is redundant frame and deficient frame?	REMEMBER BT-L1	CO1
	e number of members are more than $(2j - 3)$, then the frame is known as $n > 2j-3$, if the number of members are less than $(2j - 3)$, then the frame is known $2j-3$		
4.	Write the advantages of method of section for calculating member forces in a truss.	REMEMBER BT-L1	CO1
	primary benefit of the method of sections is that, for a determinate vidual member can be found quickly without having to solve through the ne. List the classification of frames.		
)		BT-L1	gen
Fran	nes are classified as follows:		
•	Perfect frame		
•	Deficient frame		
	Redundant frame		
	Statically determinate frame		
.	Statically indeterminate frame		
6.	What is meant by perfect frame?	REMEMBER BT-L1	CO1
A fr	ame composed of members, which is just sufficient to keep it in equilib	rium, when an ex	ternal
	is applied, is termed as perfect frame. Here $n = 2j - 3$.		
7.	How imperfect frame can be explained?	UNDERSTAND BT-L2	CO1
as in	nme, in which number of members and number of joints are not as given aperfect frame. This means that number of members in an imperfect fractions so than (2j - 3).	by $n = 2j - 3$, is kame will be either	more

8. What are the assumptions made in finding out the forces in a REMEMBER CO1 BT-L1 The assumptions made in finding out the forces in a frame are: • The frame is perfect • The frame carries load at the joints All the members are pin-jointed What are the methods available for the analysis of a frame? REMEMBER CO1 BT-L1 The following are the methods available for the analysis of a frame: Methods of joints Methods of sections Graphical method 10. How is method of joints applied to trusses carrying inclined **UNDERSTAND** CO1 loads? BT-L2 If a truss carries inclined loads hinged at one end supported on roller at the other end, the support reaction at the roller support end will be normal, whereas the support reaction at the hinged end will consist of horizontal reaction and vertical reaction. How is the force in a member determined by method of joints? REMEMBER CO1 BT-L1 While determining the force in a member by methods of joints, the joint should be selected in such a way that at any time there are only two members in which the forces are unknown. State the advantages of method of sections over the method of UNDERSTAND CO1 joints in the analysis of plane trusses. The advantages of method of sections over the method of joints are: Time is saved. • Forces in any particular /few members of the truss can be determined. Moment equilibrium equation can be effectively used to find the member force. 13. Distinguish between plane truss and space truss. **UNDERSTAND** CO1 BT-L2 **Plane Truss Space Truss** • A plane truss or planar truss is basically a A space truss is a three-dimensional two-dimensional network of uniform structure that consists of members cross-sectional members. arranged to form tetrahedrons. generally They comprise straight • These kinds of structures remain under the members such as bars and links. The application of three-dimensional force members are joined to one another by systems. pin joints. • The simplest space truss structure can be • In the plane trusses, the loads applied formed by joining six members with four and reactions induced are only at the joints to form a tetrahedron. joints, and lie in the plane of the truss. What is meant by lack of fit in a truss? 14. UNDERSTAND CO1 BT-L2 One or more members in a pin jointed statically indeterminate frame may be a little shorter or longer than what is required. Such members will have to be forced in place during the assembling. These are called members having Lack of fit. Internal forces can develop in a redundant frame (without external loads) due to lack of fit.

15.	Distinguish between pin jointed and rig	Subject Code / Name: CE350		ALYSIS
	Sign	idly jointed structure.	UNDERSTAND BT-L2	CO1
	Pin jointed structure	Rigidly jointed s	tructure	
•	The joints permit change of angle	The members connection	ected at a violation	4 711
1 19	between connected members.		ected at a rigid joir	it will
•	The joints are incapable of transferring	maintain the angl	e between them	even
	any moment to the connected members	The state of the s		
	and vice-versa.	 Members can tran 	ismit both forces	and
- 1.5-	The	moments between	themselves throug	h the
-	TOTOGO BELLVICEN	joint.		
	connected members by developing shear.	 Provision of rigid jo 	ints normally incr	eases
16 7		the redundancy of the	he structures.	
16. I	Differentiate the statically determinate s	structures and statically	UNDERSTAND	CO1
	nacter inflate structures.		BT-L2	COI
Stati	cally determinate structures	Statically indetermina	ite structures	
• (Conditions of equilibrium are sufficient	 Conditions of equilib 	rium are insufficie	nt to
	to analyze the structure	analyze the structur	e	110 00
• I	Bending moment and shear force is	 Bending moment 		ic
	independent of material and cross	dependent of mater	ial and independe	nt of
	sectional area.	cross sectional area.	iai and muepenue	nt or
• 1	No stresses are caused due to			
	temperature change and lack of fit.	• Stresses are caused	due to tempera	ture
	Distinguish between 'deck type' and 'thro	change and lack of fi		
	deck type and this	ough type trusses.		CO1
	Deck type truss	Through tur	BT-L2	
• A	deck truss is a type of bridge in which	Through type bridge type type bridge type bridge type bridge type bridge type type type type bridge type type type type type type type typ		
1	the road deck lies above the structural	cypc bi	idge, the carriage	way
1	parts.	rests at the bottom	level of the main	load
	in the second se	carrying members.		-
	Section 1997 to the section of the s	• The trusses to either	er side are gener	ally
	structure are arranged in triangular	higher and are conne	ected by cross-bra	cing
	patterns to distribute loads and ensure	at their tops. The	se are designed	for
,	he bridge stays stable.	heavier loads and lon	iger spans.	4 64 1
	DECK FEAST -	DECY	LEVEL	. 5.
	$\Pi \nabla \nabla \nabla \nabla \nabla \Pi$	$\Delta \Delta \Delta$	$\wedge \wedge \downarrow$	
	the many sugar	II.	II.	
	(b) DECK TYPE	(A) THROUGH TY	PE	
18. W	hat are the steps necessary for obtainin	g graphical solution of	REMEMBER C	01
a f	rame?	g g. apmear solution of	BT-L1	.01
The foll	lowing steps are necessary for obtaining gr	applical colution of a fermi	DI-LI	
• Ma	aking a space diagram	apilical solution of a frame:		
	enstructing a vector diagram			
	eparing a force table.			
det	nat is the effect of temperature on the reterminate plane truss?		BT-L1	01
In detern	ninate structures temperature changes do	not create any internal stre	esses. The changes	in
lengths o	of members may result in displacement of	of joints. But these would i	not result in inter	nal
straccac c	or changes in external reactions.		IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	

20. How to calculate degree of freedom and its types? **UNDERSTAND** CO1 BT-L2

Degree of freedom is defined as the least no of independent displacements required to define the deformed shape of a structure. There are two types of DOF:

- Nodal type DOF and
- Joint type DOF.

21. Define trussed beam.					
	21.	Define trussed beam.		REMEMBER	CO1
			**************************************	BT-L1	

A beam strengthened by providing ties and struts is known as Trussed Beams. A beam reinforced by a truss rod or formed of straight or cambered pieces joined by trussing.

List the assumptions made in the analysis of perfect frame. REMEMBER **CO1** BT-L1

The assumptions made in the analysis of perfect frame are:

- The loads applied at the joints of the truss
- The members of the truss carry axial forces only
- The self weight of the members are neglected

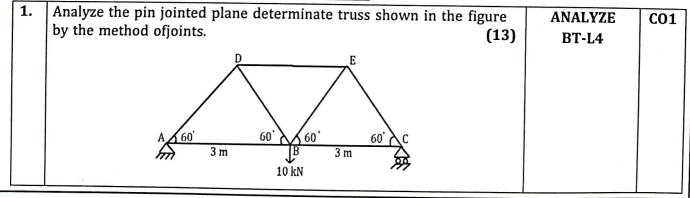
1 23	Howica frame analyzed		
1 -	B. How is a frame analyzed?	UNDERSTAND	CO1
		BT-L2	Turi"
		D1-L2	

Analysis of a frame consists of:

- Determination of the reactions at the supports and
- Determination of the forces in the members.

24.	What are the conditions of equilibrium?	REMEMBER	C01
		BT-L1	5

The conditions of equilibrium consists of three equations namely:

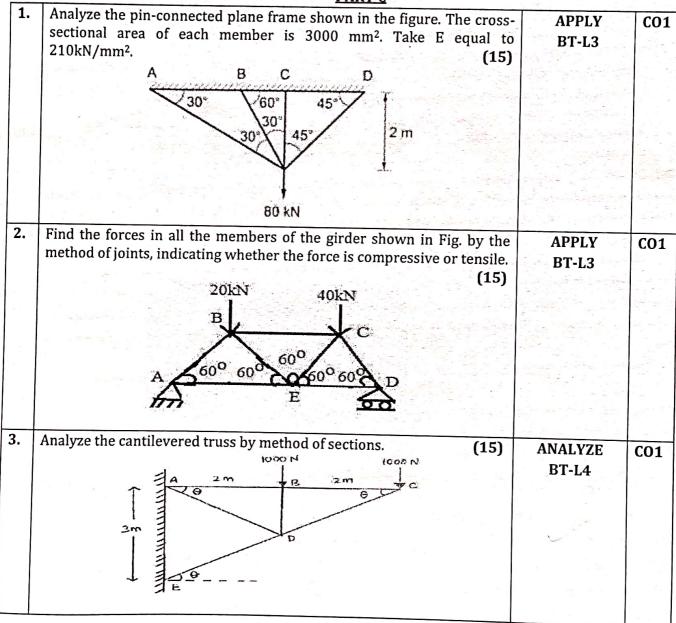

- Σ H = 0: the sum of the horizontal components of the forces equals zero;
- $\Sigma V = 0$: the sum of the vertical components of forces equals zero;
- Σ M = 0: the sum of the moments equals zero

0=		· · · · · · · · · · · · · · · · · · ·		
25.	What are the advantages of space trusses?		REMEMBER	CO1
			BT-L1	

The advantages of space frame are:

- These three-dimensional structures are sturdy. They aid load sharing with maximum precision.
- The steel elements are portable and lightweight. Therefore, their assembly is modular, secure and efficient.
- It is capable of bearing heavy loadings with minimum deflections.
- The cost of transportation is less as compared to conventional steel structures.

PART B



l r	2	Determine the ferror in the Subject Code / Name: CE350	2 / STRUCTURAL	ANALYSIS
4	2.	Determine the forces in the members of the space truss shown in the figure. By tensioncoefficient method. (13)	APPLY BT-L3	C01
2		15 kN (6,3,5) C (9,3,0)		
		75 B (0,6,0)		
	3.	Determine the focus in all the members of the truss given in the figure. Use method of joints. (13)	APPLY BT-L3	C01
4	1 .	Determine the forces in the member using all 1.5 m		
E.		Determine the forces in the member using method of sections for the truss shown in figure. 2.5 kN 3kN C B	APPLY BT-L3	CO1
5.		Determine the forces in all the members of the frame shown in figure below. Use method of joints. (13) E 12 kN 16 kN D A 60' 60' 60' C 3 m B 3 m	APPLY BT-L3	CO1
6.	1	Using method of sections determine the forces in all the members of the frame shown in the figure. (13) A 60' 60' 60' 60' D E 6m	APPLY BT-L3	CO1

	Subject Code / Name: CE35	<i>02 STRUCTURAL</i>	ANALYSIS
7.	method of joints. (13)	e APPLY	CO
8.	Find the forces in the members of the truss shown in the figure. (13)	APPLY BT-L3	CO1
9.	Find the forces in the member of the truss shown in fig. by method of sections. (13) C A 2m D 2m D 2m D 2m D (13)	APPLY BT-L3	C01
	For the truss shown in figure find the forces in members CD, CB, BD and AE by method of joints. (13) 1kN 1kN 1kN 1kN 1kN 1kN 1kN 1k	APPLY BT-L3	CO1
11. D	etermine the forces in all members of a truss as shown in the figure sing tension coefficient method. (13) 4m A 120kN	APPLY BT-L3	CO1

	40	Subject code / Name: CESSO.	E / STRUCTURAL AIV	ALI SIST
	12.	Determine the stresses in the members by tension coefficient method.	APPLY	CO1
		(13)	BT-L3	
		2m 2m		=
				*: * **
		1	The state of the s	12.1
	-			
-		1.8m 50 kN	LANCE HAVE NOTED BY	-
1				
		*	_	
-	2	Pouls in the Pouls		
1	3.	Explain in detail about the (i) Plane frame (ii) Pin jointed Frame (iii)	UNDERSTAND	CO1
_		Rigid jointed Frame. (13)	BT-L2	7
1	4.	Derive the stiffness matrix of a typical pin-jointed two-dimensional	UNDERSTAND	CO1
_	_	frame element. (13)	BT-L2	
1	5.	How do you determine the forces in the members of a truss using	UNDERSTAND	CO1
		method of joints? Explain in detail. (13)	BT-L2	

PART C

UNIT II

SLOPE DEFLECTION METHOD

PART A

1	Write the general slave defined	er in in the state of the state of	
1.	Write the general slope deflection equation.	REMEMBER	CO2
2.		BT-L1	- 2

$$M_{AB} = M'_{AB} + \frac{2EI}{I} \left[2\theta_A + \theta_B + \frac{3\Delta}{I} \right]$$

$$M_{BA} = M'_{BA} + \frac{2EI}{I} \left[2\theta_B + \theta_A + \frac{3\Delta}{I} \right]$$

where,

M'AB, M'BA = Fixed end moment at A and B respectively due to the given loading

 θ_A , θ_B = Slopes at A and B respectively

 Δ = Sinking of support A with respect to B

12	State the accumptions we do it is		
	State the assumptions made in the slope deflection method.	REMEMBER	CO2
F 11		BT-L1	-

Following are the assumptions made in slope deflection method,

- All the joints of the frame are rigid, i.e, the angle between the members at the joints do not change, when the frame is loaded.
- Whenever the beams or frames are deflected, the rigid joints are considered to rotate as a
 whole, i.e, the angle between the tangents to the various branches of the elastic curve
 meeting at a joint, remain the same as those in the original structure.
- Distortions, due to axial and shear stresses, being very small, are neglected.
- 3. Write about the effect of support displacement in a UNDERSTAND CO2 structure.

The statically determinate structure changes their shape due to support settlement and this would in turn include reactions and stresses in the system. Since there is not external force system acting on the structures, these forces form a balanced force system by themselves and the structure would be in equilibrium.

4. How many slope deflection equations are available for two span REMEMBER continuous beam?

Two numbers of slope-deflection equations are available for each span, describing the moment at each end of the span and hence four slope deflection equations are available for two span continuous beam.

5. What is sway frame? REMEMBER CO2
BT-L1

Sway is the lateral movement of joints in a portal frame due to the un-symmetry in geometry of the frame, un-symmetry in loading, moments of inertia, end conditions, settlement of one end of frame and horizontal loading on the column of the frame.

6. Mention any four causes for sway in portal frames.

REMEMBER CO2
BT-L1

Sway in portal frames may occur due to:

- Un-symmetry in geometry of the frame
- Un-symmetry in loading
- · Settlement of one end of a frame
- Horizontal loading on the column of the frame.

7. Write the advantages of slope deflection method. REMEMBER CO₂ BT-L1 The advantages of slope deflection method are: The slope-deflection method can be used to analyze statically determinate and indeterminate beams and frames. In this method it is assumed that all deformations are due to bending only. In other words deformations due to axial forces are neglected. The slope-deflection equations are not that lengthy in comparison. The slope-deflection equations are derived for the simplest case i.e. for the case of continuous beams with unyielding supports. CO₂ Identify the limitations of slope deflection method. REMEMBER 8. BT-L1 The limitations of slope deflection method are: It is not easy to account for varying member sections. It becomes very cumbersome when the unknown displacements are large in number. REMEMBER CO₂ List the uses of slope deflection method. BT-L1 Using slope deflection method rigid jointed structure can be analyzed. This method is applied to analyze the following type of structures: Continuous beam · Frames without side sway Frames with side sway **UNDERSTAND CO2** 10. Distinguish between sway type and non-sway type frames. BT-L2 Sway frame Non-sway frame • The frame in which longitudinal deflection is • The frame in which longitudinal deflection restrained by supports when the horizontal takes place when the horizontal load is loads is applied is known as a non-sway frame. applied is known as a sway frame. It is a type of an unbraced frame. It is a type of a braced frame. Non-sway mode Sway mode Distinguish between symmetry and anti-symmetry of structures. UNDERSTAND **CO2** BT-L2 **Anti-symmetry Symmetry** • Symmetry refers to the balanced • For an anti-symmetric system the structure proportional arrangement of elements in a (including support conditions) remains symmetric. structure. • It ensures that the load distribution is even However the loading is anti-symmetric and and minimizes stress concentrations. has uneven stress concentrations. • Symmetry is important as it improves the • For an anti-symmetric loading bending structural stability, aesthetic appeal, and moment and displacement will be zero. overall performance of the building.

	12	What is most by fined and many 12		NALYSIS I
	12.	What is meant by fixed end moment?	REMEMBER	CO2 -
		the state of the s	BT-L1	
-	Due	to loading, end moments develop without any rotations at ends. These	e moments are sin	milar to
şi.	the	end moments in a fixed beam and hence are called fixed end moments.	. The fixed end m	oments
10	are	reaction moments developed in a beam member under certain load co	nditions with ho	th ends
1	fixed	d. A beam with both ends fixed is statically indeterminate to the 3rd de	egree, and any str	ructural
	anal	ysis method applicable on statically indeterminate beams can be used t	o calculate the fi	ved end
	mon	nents.	o caroarato tric 112	neu enu
	13.	Define stiffness.	REMEMBER	CO2
.				COZ
ı	Stiff	ness of a prismatic member is the moment required to rotate the end wh	BT-L1	-
	unit	rotation, without translation. It is denoted as k.	ille acting on it thi	rough a
			a second	m areas of
		For simply supported beam, k = 3 EI / L For fixed beam, k = 4 EI / L		
	whe	re, E = Young's modulus of the beam material.	the same with the	
-		I = Moment of inertia of the beam &		
1		L = Beam's span length.		
H	14.			, <u>-</u> 41 . 91
	14.	How do you account for sway in slope deflection method for portal frames?	REMEMBER	CO2
-		프로그리트 그리고 그는 그 그는 그 그는 그 그는 그 그리고 하는 그리고 있는 그리고 있다고 있다고 있다고 있다.	BT-L1	2
	веса	use of sway, there will be rotations in the vertical members of a frame.	This induces mom	ents in
	the v	rertical members. To account for this, besides the equilibrium, one more	e equation namely	y shear
L	equa	tion connecting the joint-moments is used.		
	15.	A rigid frame is having totally 10 joints including support joints.	UNDERSTAND	CO2
		Out of slope-deflection and moment distribution methods, which	BT-L2	
	5	method would you prefer for analysis? Why?		
	Mon	nent distribution method is preferable. Because, if we use slope-de	eflection method	thoro
,	woul	d be 10 (or more) unknown displacements and an equal number of eq	milihrium eguati	one In
	addit	tion, there would be 2 unknown support moments per span and the	same number of	clone
1	defle	ction equations. Solving them is difficult.	same number of	stope-
-		What are the quantities in terms of which the unknown moments	DEMEMBER	600
1	- 1		REMEMBER	CO2
H		are expressed in slope-deflection method?	BT-L1	
'	II SIO	pe-deflection method, unknown moments are expressed in terms of		
		• Slopes (θ) &		
		 Deflections (Δ) 		
1	o fi	nd θ and Δ , joint equilibrium conditions and shear equations are ϵ	established The	forces
1	mon	nents) are found using force-displacement relations.	established, The	Torces
		Who introduced slope-deflection method of analysis and why	REMEMBER	602
'			1	CO2
L		this method is called a 'displacement method'?	BT-L1	
3	юре	-deflection method was introduced by Prof. George A.Maney in 19	15. In slope-def	lection
		od, displacements (like slopes and deflections) are treated as unknowns	s and hence the n	nethod
-		ed as 'displacement method'.	×	
:	18.	What is the basis on which the sway equation is formed for a	REMEMBER	CO2
	:	structure?	BT-L1	
S	way	is dealt with in slope-deflection method by considering the horizontal e	guilibrium of the	whole
f	rame	taking into account the shears at the base level of columns and externa	l horizontal force	es. The
		condition is $M_{AB} + M_{BA} - P_h + M_{CD} + M_{DC} + P = 0$,
		L L		-
		. <u> </u>		

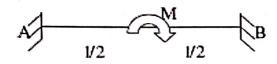
19. The beam shown in Fig. is to be Analyzed by slope-deflection method. What are the unknowns and, to determine them, what are the conditions used?

UNDERSTAND BT-L2

A B C

BT-L2

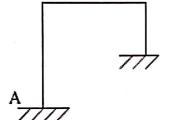
Unknowns: qA, qB, qC


Equilibrium equations used: (i) $M_{AB} = 0$ (ii) $M_{BA} + M_{BC} = 0$ (iii) $M_{CB} = 0$

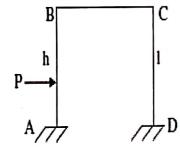
20. Write the fixed end moments for a beam carrying a central clockwise moment.

REMEMBER BT-L1

CO2


CO₂

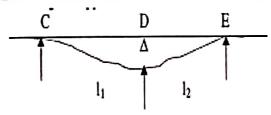
Fixed end moments: $M'_{AB} = M'_{BA} = M/4$


21. Write down the equation for sway correction for the portal frame shown in Fig. REM

REMEMBER BT-L1 CO2

The shear equation (sway correction) is $\frac{M_{AB} + M_{BA}}{D} + \frac{M_{CD} + M_{DC}}{1} = 0$

22. Write down the equilibrium equations for the frame shown in FEMEMBER BT-L1

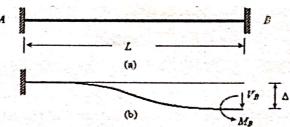

Unknowns : θ_B , θ_C

Equilibrium equations : At B, $M_{BA} + M_{BC} = 0$

At C, $M_{CB} + M_{CD} = 0$

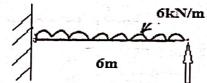
Shear equation: $M_{AB} + M_{BA} - Ph + M_{CD} + M_{DC} + P = 0$

23. In a continuous beam, one of the support sinks. What will happen to the span and support moments associated with the sinking of support?


Let support D sinks by Δ . This will not affect span moments. Fixed end moments (support moments) will get developed as under M'CD = M'DC = -6EI Δ & M'DE = M'ED = 6EI Δ

 l_1

 l_2


		= / 51116 G1 G1G1E/III	11121212
24.	Write the support reactions induced in a fixed beam when one of	REMEMBER	CO2
	its supports sinks.	BT-L1	

Let the end reactions due to settlement at B be V_B and M_B as shown in figure,

Support reactions: $M_B = 6EI\Delta/L^2$ and $V_B = 12EI\Delta/L^3$

,		A propped cantilever of span 6m is subjected to a uniformly distributed load of 6kN/m over the span. Using slope deflection	CO2
		method, Identify the slope at B. Take the flexural rigidity EI as	
1	100	9000 kN-m ² .	

$$M_{BA} = M_{BA}^{\circ} + \underline{2EI} \left[2\theta_B + \theta_A + \underline{3\Delta} \right]$$

Equilibrium condition $M_{BA} = 0$

$$M'_{BA} = (wl^2/12) = (6 \times 6^2)/12 = 18 \text{ kNm}$$

 $0 = 18 + ((2 \times 9000)/6) \times \theta B$
 $\therefore \theta B = -3 \times 10^{-3}$

PART B

1.	Analyze the two-spaced continuous beam shown in the figure by the slope deflection method and draw the bending moment and shear force diagram. Take the value of the constant Young's modulus. (13)	ANALYZE BT-L4	CO2
	4m 2m 6m		
2.	Analyze a rigid frame by the slope deflection method as shown in figure and draw the graph of the bending moment. $E = 2 \times 10^5 \text{ MPa}$ and $I = 8 \times 10^4 \text{ mm}^4$. (13)	ANALYZE BT-L4	CO2
	4m		
E.	THE PART OF THE PA		

3.	Subject Code / Name: CE3502 / S		ALYS
20	Analyze the continuous beam shown in Fig. and plot the bending moment and shear force diagram by slope deflection method. (13)	ANALYZE BT-L4	CO
	10kN/m A 10kN/m Sm 3m 3m 100kNm		
4			
4.	Analyze the frame shown in figure and plot the bending moment and shearforce diagram by slope deflection method. (13)	ANALYZE BT-L4	co
	6m 6m		
5.	Analyze the continuous beam ABC shown in figure by slope deflection method. EI = constant. (13)	ANALYZE BT-L4	СО
	3 kN/m 15 kN		
- 74	3.5 m — B 1.25 1.25 2.5 m		
6.	Analyze the portal frame ABCD shown in figure by slope deflection method. Take EI = constant. (13)	ANALYZE BT-L4	CO
	2m 2i 2m c		
	4m 21 21 4m		
7.	A continuous beam ABCD consists of three span and is loaded as shown	ANALYZE	CO
	in figure. Analyze the beam by using slope deflection method. E is constant throughout. (13) 4kN/m 8kN	BT-L4	
	6m 3m 2m 2.5m D		£ 4
8.	A 31 B 21 C 1 Solve the frame shown in fig by slope deflection method. (13)	APPLY	CO
	8 kN/m	BT-L3	
	2m 4m 2m		
	2EI 2EI		
			l

	Analyze the portal frame shown in figure land. Subject Code / Name: CE3502	/STRUCTURAL	ANALYS
9.	and show in figure by slope deflection method and	ANALYZE	
	draw the bending moment diagram. (13)		100
	B 6 kN/m		
	12 kN - 10-	-	
25	6 m (FI)		
		- NE	
	4 m (EI)		
	(2EI) 5 m		1
	φth .	William St.	-
-	A	e services per la esta	-
<u>)</u>	D D		
10		1	
10.	as death ABC is simply supported at A fixed at a	ANALWEE	1000
	Judge over support B. The chan AD to C		CO2
1.	and the span DC: 0	BT-L4	
	a dimorning distributed load of 10kN/m Tales at a	4 4	
	1 - 6 and for portion AD as ZEI and that for nortion DC - Dr.		
	and draw the showing c		
11.	A continuous beam ABC is fixed at A and simply supported at B and C. The span AB is 5m and corrier.		10
	The span AB is 5m and carries a concentrated load of 80kN at its mid-	ANALYZE	CO2
	span and the span BC is 8m and carries a uniformly distributed load of 12kN/m. Take the flavoral minutes a uniformly distributed load of 12kN/m.	BT-L4	-
	12kN/m. Take the flexural rigidity for portion AB as EI and that for		
-	portion BC as 2EI. Adapt slope deflection method and draw the shearing		
	force and bending moment diagrams.		
12.	Analyze the portal frame shown in figure by slope deflection method and		· 3
	draw the bending moment diagram.	ANALYZE	CO2
	(13)	BT-L4	E .
	15 kN/m		
2- 1	大学大学		
1	10kN Im 5m Im	n _	
	-10KV		
	2m		
		100	
	7/1/1	The second second	
13.			
1	Analyze the structures shown in figure by slope deflection method.	ANALYZE	CO2
13	ketch the bending moment and shear force diagrams. (13)	BT-L4	.02
	50 kN B C		
	and the second s		
	5 m FI Constant		
			3
- 1			
	Δ. Δ.		- 1
	2777 _	1	- 1
	A TITT D		
	A 7777 D		

14.	A continuous beam ABCD consists of three span and is loaded as shown	APPLY	
, -	in figure. Solve the beam by using slope deflection method. E is constant		CO2
		BT-L3	
J. 1	(13)		
	3kN/m 5kN 8kN		
40.00	The state of the s		
=	Janachannan L		
	6m 3m 2m 2.5m 2.5m	Maria de la companya del companya de la companya del companya de la companya de l	
	A 21 P 21 C 1		
	В		40.00
15.	ABC is a continuous hear with constant El the		-
	ABC is a continuous beam with constant EI throughout its length as	ANALYZE	CO2
	shown in figure. The end supports A and C are fixed and the beam is	BT-L4	
	continuous over middle support B. Span BC is uniformly loaded with 15		
	kN/m length while a concentrated vertical downward load of 125kN		- 14
	acts at the midspan of AB. Find the moments by slope deflection method.		=
	(12)		
	14300		
	6m . 15kN/m		+1 +
	A D		
	12m		

PART C

	1	Analyze a three span continuous beam ABCD each span of 6 m length	ANIALNOS	000
		fixed at the left end and simply supported at the right end, by slope	ANALYZE	CO2
-		deflection method. The supports B and C sinks by 10 mm and 5 mm	BT-L4	
		respectively and the support A rotates through an anticlockwise		
		angle of 0.1 radian. There are no loads with the manufactors will be made of 0.1 radian.		
		angle of 0.1 radian. There are no loads on the beam. Take $E = 200$		-14-1
1		GPa; $I = 4 \times 10^7$ mm ⁴ . Sketch the bending moment diagram and shear	and The law	**==
		force diagram. (15)		
1	2	A continuous beam ABC consists of spans AB and BC of 5m length in	ANALYZE	CO2
		each. Both ends of the beam are fixed. The span AB carries a point load of	BT-L4	COZ
		15 kN at its middle point. The span BC carries a point load of 25 kN at is		
		middle point. Find the moments and reactions at the supports. Assume		
		the beam is of uniform section. Use slope deflection method. (15)		
	3	Analyze the portal frame shown in figure by slope deflection method.	ANIALNIE	200
		(15)	ANALYZE	CO2
			BT-L4	
		112 KN		2.2
		2m 2m	(9,5)	-
		13m		
		Am		
				-
		mer EI Constant	n = ,e =	
	-			
		The second secon		
L			-	

UNIT III

MOMENT DISTRIBUTION METHOD

PART A

2. Write about distribution factor. Write about distribution factor. Distribution factor for the member at a joint is the ratio of the relative stiffness of a member to the total stiffness of all the members meeting at the joint. Distribution factor = K/∑K 3. Define carry over factor. Carry over factor is defined as the ratio of the induced moment to the applied moment. It is the one in which half of the balanced moment is carried to far fixed end (ie.C0=0.5). The carry over factor is zero if the end is hinged/pin connected. 4. What is meant by side sway? REMEMBER BT-L1 The lateral movement of the frames is known as side sway. If the loading system (or) the geometry of the system is not symmetric, the frame will have side sway. Side sway may be prevented in a frame by providing shear or partition walls and fixing the top of frame with adjoining rigid structures. 5. Write about the conditions for sway corrections. Write about the conditions when sway corrections are required: Sway correction for a frame becomes necessary when the frame itself is unsymmetrical. The following are the conditions when sway corrections are required: Sway Correction for Unsymmetrical Frame Sway Correction for Unsymmetrical Frame and Loading Sway Correction for Unsymmetrical Loading Sway Correction for Unsymmetrical Loading Sway Correction for Unsymmetrical Loading on Symmetrical Frame 6. What is unbalanced moment? REMEMBER CO3 BT-L1 Moment distribution method of analysis assumes that the joints in a structure are initially clamped or locked and then released successively. Once a joint is released, a rotation takes place, since the sum of the end moments obtained is the unbalanced moment at that joint. 7. What is carryover moment? REMEMBER CO3 BT-L1 Prover moments.			
method, all the members of the structure are assumed to be fixed in position and fixed end moments due to external loads are obtained. It is also known as Hardy cross method. 2. Write about distribution factor. Distribution factor for the member at a joint is the ratio of the relative stiffness of a member to the total stiffness of all the members meeting at the joint. Distribution factor for the member at a joint is the ratio of the relative stiffness of a member to the total stiffness of all the members meeting at the joint. Distribution factor = K / \(\subseteq K \) 3. Define carry over factor. Carry over factor is defined as the ratio of the induced moment to the applied moment. It is the one in which half of the balanced moment is carried to far fixed end (ie.Co=0.5). The carry over factor is zero if the end is hinged/pin connected. 4. What is meant by side sway? REMEMBER BT-L1 The lateral movement of the frames is known as side sway. If the loading system (or) the geometry of the system is not symmetric, the frame will have side sway. Side sway may be prevented in a frame by providing shear or partition walls and fixing the top of frame with adjoining rigid structures. 5. Write about the conditions for sway corrections. Sway correction for a frame becomes necessary when the frame itself is unsymmetrical. The following are the conditions when sway corrections are required: Sway Correction for Unsymmetrical Frame Sway Correction for Unsymmetrical Frame and Loading Sway Correction for Both Unsymmetrical Frame and Loading Sway Correction for Unsymmetrical Frame and Loading or Symmetrical Frame and the condition of the sum of the fixed end moments of the members meeting at that joint is not zero. The value of the sum of the fixed end moments of the members meeting at that joint cause moments in the other ends, which are assumed to be fixe		BT-L1	
Write about distribution factor. UNDERSTAND BT-L2	Moment distribution method is widely used for the analysis of indeterm method, all the members of the structure are assumed to be fixed in	inate structures. I	n this
Distribution factor for the member at a joint is the ratio of the relative stiffness of a member to the total stiffness of all the members meeting at the joint. Distribution factor = K / ∑K 3. Define carry over factor. Carry over factor is defined as the ratio of the induced moment to the applied moment. It is the one in which half of the balanced moment is carried to far fixed end (ie.CO=0.5). The carry over factor is defined as the ratio of the induced moment to the applied moment. It is the one in which half of the balanced moment is carried to far fixed end (ie.CO=0.5). The carry over factor is zero if the end is hinged/pin connected. 4. What is meant by side sway? REMEMBER BT-1.1 The lateral movement of the frames is known as side sway. If the loading system (or) the geometry of the system is not symmetric, the frame will have side sway. Side sway may be prevented in a frame by providing shear or partition walls and fixing the top of frame with adjoining rigid structures. 5. Write about the conditions for sway corrections. UNDERSTAND BT-1.2 Sway correction for a frame becomes necessary when the frame itself is unsymmetrical. The following are the conditions when sway corrections are required: Sway Correction for Unsymmetrical Frame Sway Correction for Unsymmetrical Frame Sway Correction for Unsymmetrical Frame Sway Correction for Unsymmetrical Loading Sway Correction for Unsymmetrical Loading Sway Correction for Unsymmetrical Frame and Loading Sway Correction for Unsymmetrical Frame and Loading Sway Correction for Unsymmetrical Frame and Loading What is unbalanced moment? REMEMBER CO3 BT-1.1 Moment distribution method of analysis assumes that the joints in a structure are initially clamped or locked and then released successively. Once a joint is released, a rotation takes place, since the sum of the fixed end moments of the members meeting at that joint cause moments in the other ends, which are assumed to be fixed. These induced moments at the other ends are called carry-over moment	moments due to external loads are obtained. It is also known as Hardy cross	s method.	a enc
Distribution factor for the member at a joint is the ratio of the relative stiffness of a member to the total stiffness of all the members meeting at the joint. Distribution factor = K / ∑K 3. Define carry over factor. REMEMBER BT-L1 Carry over factor is defined as the ratio of the induced moment to the applied moment. It is the one in which half of the balanced moment is carried to far fixed end (ie.CO=0.5). The carry over factor is zero if the end is hinged/pin connected. 4. What is meant by side sway? REMEMBER BT-L1 The lateral movement of the frames is known as side sway. If the loading system (or) the geometry of the system is not symmetric, the frame will have side sway. Side sway may be prevented in a frame by providing shear or partition walls and fixing the top of frame with adjoining rigid structures. 5. Write about the conditions for sway corrections. Will be a sway correction for a frame becomes necessary when the frame itself is unsymmetrical. The following are the conditions when sway corrections are required: Sway correction for Unsymmetrical Frame Sway Correction for Unsymmetrical Loading Sway Correction for Unsymmetrical Frame and Loading at that joint is not zero. The value of the sum of the fixed end moments of the members meeting at that joint is not zero. The value		UNDERSTAND	COS
Distribution factor = K / ∑K 3. Define carry over factor. Carry over factor is defined as the ratio of the induced moment to the applied moment. It is the one in which half of the balanced moment is carried to far fixed end (ie.CO=0.5). The carry over factor is zero if the end is hinged/pin connected. 4. What is meant by side sway? The lateral movement of the frames is known as side sway. If the loading system (or) the geometry of the system is not symmetric, the frame will have side sway. Side sway may be prevented in a frame by providing shear or partition walls and fixing the top of frame with adjoining rigid structures. 5. Write about the conditions for sway corrections. With a doubt the conditions for sway corrections. With a doubt the conditions when sway corrections are required: Sway correction for a frame becomes necessary when the frame itself is unsymmetrical. The following are the conditions when sway corrections are required: Sway Correction for Unsymmetrical Frame Sway Correction for Unsymmetrical Frame and Loading Sway Correction for Both Unsymmetrical Frame and Loading Sway Correction for Unsymmetrical Frame and Loading What is unbalanced moment? REMEMBER CO3 BT-1.1 Moment distribution method of analysis assumes that the joints in a structure are initially clamped or locked and then released successively. Once a joint is released, a rotation takes place, since the sum of the fixed end moments of the members meeting at that joint is not zero. The value of the sum of the end moments obtained is the unbalanced moment at that joint. What is carryover moment? Remember BT-1.1 The distributed moments in the ends of members meeting at a joint cause moments in the other ends, which are assumed to be fixed. These induced moments at the other ends are called carryover moments. What is distributed moment? Remember CO3 BT-1.1 Support the release of the imaginary clamp at a joint, the unbalanced moment at that joint causes it to	Distribution factor for the member at a joint is the ratio of the relative stiff	ness of a member	to the
Carry over factor is defined as the ratio of the induced moment to the applied moment. It is the one in which half of the balanced moment is carried to far fixed end (ie.CO=0.5). The carry over factor is zero if the end is hinged/pin connected. 4. What is meant by side sway? The lateral movement of the frames is known as side sway. If the loading system (or) the geometry of the system is not symmetric, the frame will have side sway. Side sway may be prevented in a frame by providing shear or partition walls and fixing the top of frame with adjoining rigid structures. 5. Write about the conditions for sway corrections. Will be about the conditions for sway corrections. Sway correction for a frame becomes necessary when the frame itself is unsymmetrical. The following are the conditions when sway corrections are required: Sway Correction for Unsymmetrical Frame Sway Correction for Unsymmetrical Frame and Loading Sway Correction for Unsymmetrical Loading Sway Correction for Unsymmetrical Loading on Symmetrical Frame Moment distribution method of analysis assumes that the joints in a structure are initially clamped or locked and then released successively. Once a joint is released, a rotation takes place, since the sum of the fixed end moments of the members meeting at that joint is not zero. The value of the sum of the end moments obtained is the unbalanced moment at that joint. What is carryover moment? REMEMBER CO3 BT-L1 The distributed moments in the ends of members meeting at a joint cause moments in the other ends, which are assumed to be fixed. These induced moments at the other ends are called carryover moments. What is distributed moment? REMEMBER CO3 BT-L1 Upon the release of the imaginary clamp at a joint, the unbalanced moment at that joint causes it to			
Carry over factor is defined as the ratio of the induced moment to the applied moment. It is the one in which half of the balanced moment is carried to far fixed end (ie.CO=0.5). The carry over factor is zero if the end is hinged/pin connected. 4. What is meant by side sway? REMEMBER BT-L1 The lateral movement of the frames is known as side sway. If the loading system (or) the geometry of the system is not symmetric, the frame will have side sway. Side sway may be prevented in a frame by providing shear or partition walls and fixing the top of frame with adjoining rigid structures. 5. Write about the conditions for sway corrections. Will about the conditions for sway corrections. Sway correction for a frame becomes necessary when the frame itself is unsymmetrical. The following are the conditions when sway corrections are required: Sway Correction for Unsymmetrical Frame Sway Correction for Unsymmetrical Loading Sway Correction for Unsymmetrical Loading What is unbalanced moment? REMEMBER BT-L1 Moment distribution method of analysis assumes that the joints in a structure are initially clamped or locked and then released successively. Once a joint is released, a rotation takes place, since the sum of the fixed end moments of the members meeting at that joint is not zero. The value of the sum of the end moments obtained is the unbalanced moment at that joint. What is carryover moment? REMEMBER CO3 BT-L1 The distributed moments in the ends of members meeting at a joint cause moments in the other ends, which are assumed to be fixed. These induced moments at the other ends are called carryover moments. What is distributed moment? REMEMBER CO3 BT-L1 Support the release of the imaginary clamp at a joint, the unbalanced moment at that joint causes it to the content of the imaginary clamp at a joint, the unbalanced moment at that joint causes it to			
in which half of the balanced moment is carried to far fixed end (ie.CO=0.5). The carry over factor is zero if the end is hinged/pin connected. 4. What is meant by side sway? The lateral movement of the frames is known as side sway. If the loading system (or) the geometry of the system is not symmetric, the frame will have side sway. Side sway may be prevented in a frame by providing shear or partition walls and fixing the top of frame with adjoining rigid structures. 5. Write about the conditions for sway corrections. Wile about the conditions for sway corrections. Write about the conditions for sway corrections are required: Sway correction for a frame becomes necessary when the frame itself is unsymmetrical. The following are the conditions when sway corrections are required: Sway Correction for Unsymmetrical Frame Sway Correction for Unsymmetrical Loading Sway Correction for Unsymmetrical Frame and Loading Sway Correction for Unsymmetrical Loading on Symmetrical Frame 6. What is unbalanced moment? REMEMBER BT-L1 Moment distribution method of analysis assumes that the joints in a structure are initially clamped or locked and then released successively. Once a joint is released, a rotation takes place, since the sum of the fixed end moments of the members meeting at that joint is not zero. The value of the sum of the end moments obtained is the unbalanced moment at that joint. What is carryover moment? REMEMBER CO3 BT-L1 The distributed moments in the ends of members meeting at a joint cause moments in the other ends, which are assumed to be fixed. These induced moments at the other ends are called carryover moments. What is distributed moment? REMEMBER CO3 BT-L1 Joint the release of the imaginary clamp at a joint, the unbalanced moment at that joint causes it to		BT-L1	
4. What is meant by side sway? REMEMBER BT-L1 The lateral movement of the frames is known as side sway. If the loading system (or) the geometry of the system is not symmetric, the frame will have side sway. Side sway may be prevented in a frame by providing shear or partition walls and fixing the top of frame with adjoining rigid structures. 5. Write about the conditions for sway corrections. Write about the conditions for sway corrections. Write about the conditions for sway corrections are required: Sway correction for a frame becomes necessary when the frame itself is unsymmetrical. The following are the conditions when sway corrections are required: Sway Correction for Unsymmetrical Frame Sway Correction for Unsymmetrical Frame and Loading Sway Correction for Unsymmetrical Loading Sway Correction for Unsymmetrical Frame and Loading What is unbalanced moment? REMEMBER BT-L1 Moment distribution method of analysis assumes that the joints in a structure are initially clamped or locked and then released successively. Once a joint is released, a rotation takes place, since the sum of the fixed end moments of the members meeting at that joint is not zero. The value of the sum of the end moments obtained is the unbalanced moment at that joint. What is carryover moment? REMEMBER CO3 BT-L1 The distributed moments in the ends of members meeting at a joint cause moments in the other ends, which are assumed to be fixed. These induced moments at the other ends are called carryover moments. What is distributed moment? REMEMBER CO3 BT-L1 Dyon the release of the imaginary clamp at a joint, the unbalanced moment at that joint causes it to	Carry over factor is defined as the ratio of the induced moment to the appli	ed moment. It is th	ie one
The lateral movement of the frames is known as side sway. If the loading system (or) the geometry of the system is not symmetric, the frame will have side sway. Side sway may be prevented in a frame by providing shear or partition walls and fixing the top of frame with adjoining rigid structures. 5. Write about the conditions for sway corrections. Write about the conditions for sway corrections. Write about the conditions for sway corrections are required: Sway correction for a frame becomes necessary when the frame itself is unsymmetrical. The following are the conditions when sway corrections are required: Sway Correction for Unsymmetrical Frame Sway Correction for Unsymmetrical Loading Sway Correction for Unsymmetrical Frame and Loading What is unbalanced moment? REMEMBER BT-L1 Moment distribution method of analysis assumes that the joints in a structure are initially clamped or locked and then released successively. Once a joint is released, a rotation takes place, since the sum of the fixed end moments of the members meeting at that joint is not zero. The value of the sum of the end moments obtained is the unbalanced moment at that joint. What is carryover moment? REMEMBER BT-L1 The distributed moments in the ends of members meeting at a joint cause moments in the other ends, which are assumed to be fixed. These induced moments at the other ends are called carryover moments. What is distributed moment? REMEMBER CO3 BT-L1 What is distributed moment? REMEMBER CO3 BT-L1 Support the release of the imaginary clamp at a joint, the unbalanced moment at that joint causes it to	in which half of the balanced moment is carried to far fixed end (ie.CO=0.5).	The carry over fac	ctor is
The lateral movement of the frames is known as side sway. If the loading system (or) the geometry of the system is not symmetric, the frame will have side sway. Side sway may be prevented in a frame by providing shear or partition walls and fixing the top of frame with adjoining rigid structures. 5. Write about the conditions for sway corrections. Write about the conditions for sway corrections. Write about the conditions for sway corrections. Sway correction for a frame becomes necessary when the frame itself is unsymmetrical. The following are the conditions when sway corrections are required: Sway Correction for Unsymmetrical Frame Sway Correction for Unsymmetrical Loading Sway Correction for Unsymmetrical Frame and Loading What is unbalanced moment? REMEMBER BT-L1 Moment distribution method of analysis assumes that the joints in a structure are initially clamped for locked and then released successively. Once a joint is released, a rotation takes place, since the sum of the fixed end moments of the members meeting at that joint is not zero. The value of the sum of the end moments obtained is the unbalanced moment at that joint. What is carryover moment? REMEMBER BT-L1 The distributed moments in the ends of members meeting at a joint cause moments in the other ends, which are assumed to be fixed. These induced moments at the other ends are called carryover moments. What is distributed moment? REMEMBER CO3 BT-L1 CO3 What is distributed moment? REMEMBER CO3 BT-L1 CO3 What is distributed moment?			
of the system is not symmetric, the frame will have side sway. Side sway may be prevented in a frame by providing shear or partition walls and fixing the top of frame with adjoining rigid structures. 5. Write about the conditions for sway corrections. Sway correction for a frame becomes necessary when the frame itself is unsymmetrical. The following are the conditions when sway corrections are required: Sway Correction for Unsymmetrical Frame Sway Correction for Unsymmetrical Loading Sway Correction for Both Unsymmetrical Frame and Loading Sway Correction for Unsymmetrical Loading on Symmetrical Frame Moment distribution method of analysis assumes that the joints in a structure are initially clamped or locked and then released successively. Once a joint is released, a rotation takes place, since the sum of the fixed end moments of the members meeting at that joint is not zero. The value of the sum of the end moments obtained is the unbalanced moment at that joint. What is carryover moment? REMEMBER BT-L1 The distributed moments in the ends of members meeting at a joint cause moments in the other ends, which are assumed to be fixed. These induced moments at the other ends are called carryover moments. REMEMBER BT-L1 What is distributed moment? REMEMBER CO3 BT-L1 Support the release of the imaginary clamp at a joint, the unbalanced moment at that joint causes it to		BT-L1	= -
frame by providing shear or partition walls and fixing the top of frame with adjoining rigid structures. 5. Write about the conditions for sway corrections. Sway correction for a frame becomes necessary when the frame itself is unsymmetrical. The following are the conditions when sway corrections are required: Sway Correction for Unsymmetrical Frame Sway Correction for Unsymmetrical Loading Sway Correction for Unsymmetrical Frame and Loading Sway Correction for Unsymmetrical Frame and Loading Sway Correction for Unsymmetrical Loading on Symmetrical Frame Moment distribution method of analysis assumes that the joints in a structure are initially clamped or locked and then released successively. Once a joint is released, a rotation takes place, since the sum of the fixed end moments of the members meeting at that joint is not zero. The value of the sum of the end moments obtained is the unbalanced moment at that joint. What is carryover moment? REMEMBER BT-L1 The distributed moments in the ends of members meeting at a joint cause moments in the other ends, which are assumed to be fixed. These induced moments at the other ends are called carryover moments. What is distributed moment? REMEMBER CO3 BT-L1 Upon the release of the imaginary clamp at a joint, the unbalanced moment at that joint causes it to	The lateral movement of the frames is known as side sway. If the loading sy	stem (or) the geo	metry
Structures. Write about the conditions for sway corrections. UNDERSTAND BT-L2	of the system is not symmetric, the frame will have side sway. Side sway	may be prevente	d in a
Sway correction for a frame becomes necessary when the frame itself is unsymmetrical. The following are the conditions when sway corrections are required: Sway Correction for Unsymmetrical Frame Sway Correction for Unsymmetrical Loading Sway Correction for Unsymmetrical Frame and Loading Sway Correction for Unsymmetrical Frame and Loading Sway Correction for Unsymmetrical Loading Sway Correction for Unsymmetrical Loading REMEMBER ST-L1 Moment distribution method of analysis assumes that the joints in a structure are initially clamped for locked and then released successively. Once a joint is released, a rotation takes place, since the sum of the fixed end moments of the members meeting at that joint is not zero. The value of the sum of the end moments obtained is the unbalanced moment at that joint. What is carryover moment? REMEMBER BT-L1 The distributed moments in the ends of members meeting at a joint cause moments in the other ends, which are assumed to be fixed. These induced moments at the other ends are called carryover moments. What is distributed moment? REMEMBER BT-L1 Joint the release of the imaginary clamp at a joint, the unbalanced moment at that joint causes it to		ne with adjoining	rigid
Sway correction for a frame becomes necessary when the frame itself is unsymmetrical. The following are the conditions when sway corrections are required: Sway Correction for Unsymmetrical Frame Sway Correction for Unsymmetrical Loading Sway Correction for Unsymmetrical Frame and Loading Sway Correction for Unsymmetrical Frame and Loading Sway Correction for Unsymmetrical Loading on Symmetrical Frame Moment distribution method of analysis assumes that the joints in a structure are initially clamped or locked and then released successively. Once a joint is released, a rotation takes place, since the sum of the fixed end moments of the members meeting at that joint is not zero. The value of the sum of the end moments obtained is the unbalanced moment at that joint. What is carryover moment? REMEMBER BT-L1 The distributed moments in the ends of members meeting at a joint cause moments in the other ends, which are assumed to be fixed. These induced moments at the other ends are called carryover moments. What is distributed moment? REMEMBER BT-L1 Upon the release of the imaginary clamp at a joint, the unbalanced moment at that joint causes it to			
Sway correction for a frame becomes necessary when the frame itself is unsymmetrical. The following are the conditions when sway corrections are required: Sway Correction for Unsymmetrical Frame Sway Correction for Unsymmetrical Loading Sway Correction for Both Unsymmetrical Frame and Loading Sway Correction for Unsymmetrical Loading on Symmetrical Frame Moment distribution method of analysis assumes that the joints in a structure are initially clamped or locked and then released successively. Once a joint is released, a rotation takes place, since the sum of the fixed end moments of the members meeting at that joint is not zero. The value of the sum of the end moments obtained is the unbalanced moment at that joint. What is carryover moment? REMEMBER BT-L1 The distributed moments in the ends of members meeting at a joint cause moments in the other ends, which are assumed to be fixed. These induced moments at the other ends are called carryover moments. What is distributed moment? REMEMBER BT-L1 Upon the release of the imaginary clamp at a joint, the unbalanced moment at that joint causes it to	5. Write about the conditions for sway corrections.		CO3
• Sway Correction for Unsymmetrical Frame • Sway Correction for Unsymmetrical Loading • Sway Correction for Both Unsymmetrical Frame and Loading • Sway Correction for Unsymmetrical Frame and Loading • Sway Correction for Unsymmetrical Frame and Loading • Sway Correction for Unsymmetrical Loading on Symmetrical Frame 6. What is unbalanced moment? Moment distribution method of analysis assumes that the joints in a structure are initially clamped or locked and then released successively. Once a joint is released, a rotation takes place, since the sum of the fixed end moments of the members meeting at that joint is not zero. The value of the sum of the end moments obtained is the unbalanced moment at that joint. 7. What is carryover moment? REMEMBER BT-L1 The distributed moments in the ends of members meeting at a joint cause moments in the other ends, which are assumed to be fixed. These induced moments at the other ends are called carryover moments. 8. What is distributed moment? REMEMBER CO3 BT-L1 Upon the release of the imaginary clamp at a joint, the unbalanced moment at that joint causes it to	Sway correction for a frame becomes necessary when the frame itself	is unsymmetrica	l. The
Sway Correction for Unsymmetrical Loading Sway Correction for Both Unsymmetrical Frame and Loading Sway Correction for Unsymmetrical Loading on Symmetrical Frame Moment distribution method of analysis assumes that the joints in a structure are initially clamped or locked and then released successively. Once a joint is released, a rotation takes place, since the sum of the fixed end moments of the members meeting at that joint is not zero. The value of the sum of the end moments obtained is the unbalanced moment at that joint. Mat is carryover moment? REMEMBER BT-L1 The distributed moments in the ends of members meeting at a joint cause moments in the other ends, which are assumed to be fixed. These induced moments at the other ends are called carryover moments. What is distributed moment? REMEMBER CO3 BT-L1 Upon the release of the imaginary clamp at a joint, the unbalanced moment at that joint causes it to			5 -
Sway Correction for Both Unsymmetrical Frame and Loading Sway Correction for Unsymmetrical Loading on Symmetrical Frame What is unbalanced moment? Moment distribution method of analysis assumes that the joints in a structure are initially clamped or locked and then released successively. Once a joint is released, a rotation takes place, since the sum of the fixed end moments of the members meeting at that joint is not zero. The value of the sum of the end moments obtained is the unbalanced moment at that joint. What is carryover moment? REMEMBER BT-L1 The distributed moments in the ends of members meeting at a joint cause moments in the other ends, which are assumed to be fixed. These induced moments at the other ends are called carryover moments. What is distributed moment? REMEMBER BT-L1 Joint the release of the imaginary clamp at a joint, the unbalanced moment at that joint causes it to			
Sway Correction for Unsymmetrical Loading on Symmetrical Frame Moment distribution method of analysis assumes that the joints in a structure are initially clamped or locked and then released successively. Once a joint is released, a rotation takes place, since the sum of the fixed end moments of the members meeting at that joint is not zero. The value of the sum of the end moments obtained is the unbalanced moment at that joint. What is carryover moment?			
Moment distribution method of analysis assumes that the joints in a structure are initially clamped or locked and then released successively. Once a joint is released, a rotation takes place, since the sum of the fixed end moments of the members meeting at that joint is not zero. The value of the sum of the end moments obtained is the unbalanced moment at that joint. What is carryover moment? REMEMBER BT-L1 The distributed moments in the ends of members meeting at a joint cause moments in the other ends, which are assumed to be fixed. These induced moments at the other ends are called carryover moments. What is distributed moment? REMEMBER BT-L1 Joint the release of the imaginary clamp at a joint, the unbalanced moment at that joint causes it to			
Moment distribution method of analysis assumes that the joints in a structure are initially clamped or locked and then released successively. Once a joint is released, a rotation takes place, since the sum of the fixed end moments of the members meeting at that joint is not zero. The value of the sum of the end moments obtained is the unbalanced moment at that joint. 7. What is carryover moment? REMEMBER BT-L1 The distributed moments in the ends of members meeting at a joint cause moments in the other ends, which are assumed to be fixed. These induced moments at the other ends are called carryover moments. 8. What is distributed moment? REMEMBER CO3 BT-L1 Jpon the release of the imaginary clamp at a joint, the unbalanced moment at that joint causes it to	Sway Correction for Unsymmetrical Loading on Symmetrical Fran	ne	
or locked and then released successively. Once a joint is released, a rotation takes place, since the sum of the fixed end moments of the members meeting at that joint is not zero. The value of the sum of the end moments obtained is the unbalanced moment at that joint. 7. What is carryover moment? REMEMBER BT-L1 The distributed moments in the ends of members meeting at a joint cause moments in the other ends, which are assumed to be fixed. These induced moments at the other ends are called carryover moments. 8. What is distributed moment? REMEMBER CO3 BT-L1 Jpon the release of the imaginary clamp at a joint, the unbalanced moment at that joint causes it to		BT-L1	
sum of the fixed end moments of the members meeting at that joint is not zero. The value of the sum of the end moments obtained is the unbalanced moment at that joint. 7. What is carryover moment? 8. What is distributed moment? 8. REMEMBER are called carryover moments. 8. What is distributed moment? 8. REMEMBER BT-L1 9. CO3 8. BT-L1 9. CO3	Moment distribution method of analysis assumes that the joints in a structu	re are initially cla	mped
what is carryover moments of members meeting at a joint cause moments in the other ends, which are assumed to be fixed. These induced moments at the other ends are called carryover moments. What is distributed moment? REMEMBER BT-L1 The distributed moments in the ends of members meeting at a joint cause moments in the other ends, which are assumed to be fixed. These induced moments at the other ends are called carryover moments. REMEMBER BT-L1 John the release of the imaginary clamp at a joint, the unbalanced moment at that joint causes it to	or locked and then released successively. Once a joint is released, a rotation	n takes place, sind	e the
What is carryover moment? REMEMBER BT-L1 The distributed moments in the ends of members meeting at a joint cause moments in the other ends, which are assumed to be fixed. These induced moments at the other ends are called carryover moments. What is distributed moment? REMEMBER cos BT-L1 Joint the release of the imaginary clamp at a joint, the unbalanced moment at that joint causes it to	um of the fixed end moments of the members meeting at that joint is no	t zero. The value o	of the
The distributed moments in the ends of members meeting at a joint cause moments in the other ends, which are assumed to be fixed. These induced moments at the other ends are called carry-over moments. 3. What is distributed moment? BEMEMBER BT-L1 Joint the release of the imaginary clamp at a joint, the unbalanced moment at that joint causes it to			
ends, which are assumed to be fixed. These induced moments at the other ends are called carry- over moments. B. What is distributed moment? BY T-L1 Upon the release of the imaginary clamp at a joint, the unbalanced moment at that joint causes it to		BT-L1	
ends, which are assumed to be fixed. These induced moments at the other ends are called carry- over moments. B. What is distributed moment? BY A STATE OF THE S	he distributed moments in the ends of members meeting at a joint cause	moments in the	other
What is distributed moment? REMEMBER BT-L1 Joint the release of the imaginary clamp at a joint, the unbalanced moment at that joint causes it to	ends, which are assumed to be fixed. These induced moments at the other	r ends are called o	arry-
Jpon the release of the imaginary clamp at a joint, the unbalanced moment at that joint causes it to	over moments.		•
Jpon the release of the imaginary clamp at a joint, the unbalanced moment at that joint causes it to	What is distributed moment?	DEMEMBED	CO3
ml		BT-L1	
otate. The rotation twists the end of the members meeting at the joint, resulting in the	Ipon the release of the imaginary clamp at a joint, the unbalanced moment	BT-L1 at that joint causes	s it to
development of resisting moments. These resisting moments are called distributed moments.	otate. The rotation twists the end of the members meeting at the	BT-L1 at that joint causes joint, resulting in	s it to

		Subject Code / Name: CE350	Z / STRUCTURAL AN	ALYSIS I
9	• ,	Write about point of contra flexure.	UNDERSTAND BT-L2	CO3
Α	ро	int of contra flexure occurs where the bending moment in a beam cha	inges its sign (i.e.	from
		o -ve or -ve to +ve). In a bending moment diagram, it is the point at whic		
		e intersects with the zero line.		
1	0.	What are the assumptions made in the moment distribution	REMEMBER	CO3
		method?	BT-L1	
Т	he a	assumptions made in moment distribution method are as follows:		
		 All the members of the structure are assumed to be fixed in position 	on	
		 Joints are prevented from any possible rotation. 	i je se se e	
١,		 The moments developed at the member ends are taken as fixed en 	d moments.	
1	1.	List the steps involved in moment distribution method.	REMEMBER	CO3
		and stope in over in moment distribution method.	BT-L1	000
T	he	steps involved in moment distribution method are listed below:		
		Calculation of fixed end moments.		
		Calculation of unbalanced moment.		
		Computing balancing moments.		
		Distribution of balancing moment.		
		Carryover of distributed moment.		
		Total moment at the end of cycle.		
-	12.	What are the limitations of moment distribution method?	REMEMBER	CO3
1,	L 4.	What are the mintations of moment distribution method:	BT-L1	COS
7	Γhe	limitations of moment distribution method are:	en en de en de la company	1,-1
In this method continuity of slope is assumed.				
1		• This method is not applicable where there is a sudden break in	the continuity of	slope
		such as an internal hinge or internal links are present.		
1	13.	How stiffness of beams can be calculated?	UNDERSTAND	CO3
			BT-L2	
E	3ear	n stiffness can be calculated using two factors as follows:		
		• The first factor is the elastic modulus. This is a material prope	erty that relates	to the
		material's tendency to deform, or stretch out, when stress is appli-	ed.	
		· The other factor in beam stiffness is the area moment of inert	ia of the beam's	cross
		section. This relates with the vertical distribution of material clo	se to or away fro	m the
		center of the beam.	-	
1	14.	Write the fixed end moments of a beams having sinking supports.	REMEMBER	CO3
			BT-L1	-
		any intermediate span AB, if there is sinking of support or lateral dow		ent of
10	eft e	and A with respect to right end B, i.e. δ , the fixed end moments at A and E	are as follows:	
		$FM_{AB} = FM_{BA} = +6EI\delta/L^2$ (clockwise)		
r	his	fixed end moment is added to those due to external loads in analysis pro	ocedure.	5
1	15.	Give an outline about compatibility conditions.	UNDERSTAND	CO3
			BT-L2	
		 The compatibility conditions are developed for the manual analyst 	sis of simple struc	ctures,
		and are based on the concept of redundant structural members.		
		 Compatibility is used when solving indeterminate members be 		ons of
		equilibrium do not allow us to solve for all of the unknowns within		
		 Compatibility equations are those additional equations which ca 		dering
		equilibrium of the structure, to solve statically indeterminate stru		_

16. Define static indeterminacy.

REMEMBER BT-L1

The static indeterminacy is defined as the number of equations required over and above the equations of static equilibrium for the analysis of a structure is known as the degree of static indeterminacy or degree of redundancy.

17. What are the conditions in which a frame is subjected to sway?

REMEMBER BT-L1

CO3

The conditions in which a frame is subjected to sway are listed below:

- Different end conditions of the columns
- Non-uniform section of the members
- Unsymmetrical settlement of supports
- Eccentric or unsymmetric loading

What are the advantages of continuous beam over simply 18. **UNDERSTAND CO3** supported beam? BT-L2

The advantages of continuous beam over simply supported beam are:

- The maximum bending moment in case of continuous beam is much less than in case of simply supported beam of same span carrying same loads.
- · In case of continuous beam, the average bending moment is lesser and hence lighter materials of construction can be used to resist the bending moment.

What are symmetric quantities in structural behaviour? 19.

REMEMBER BT-L1

CO3

When a symmetrical structure is loaded with symmetrical loading, the bending moment and deflected shape will be symmetrical about the same axis. These bending moment and deflection are termed as symmetrical quantities.

20. In a member AB, if a moment of -10 KNm is applied at A, what is the moment carried over to B?

UNDERSTAND BT-L2

CO3

Carry over moment = Half of the applied moment/Carry over moment to B

=-10/2 = -5 kNm

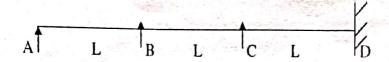
A Continuous beam ABC of length 2L (with constant EI) is simply 21. supported at the ends A and C and continuous over the support B at mid-length. Using moment distribution method, Find the moment at the support B, if it is subjected to a uniformly distributed load 'w' throughout the length.

UNDERSTAND BT-L2

CO3

W kN/m W kN/m

Distribution factor = 1/2

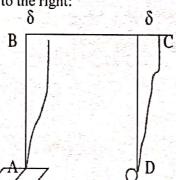

Joint	Α Α	В .		C
Member	AB	BA	BC	СВ
Distribution factor		1/2	1/2	
Fixed end Moment	- WL ² /12	$+WL^2/12$	- WL ² /12	+WL ² /12
	+WL ² /12	+WL ² /24	- WL ² /24	- WL ² /12
Initial moment	0	+WL ² /8	-WL ² /8	0
Balancing		0	0	
Final moment		+WL ² /8	-WL ² /8	1, 100

Moment at the support $B = WL^2/8$

22.	Calculate the distribution factor for the given beam.
-----	---

UNDERSTAND BT-L2

CO3

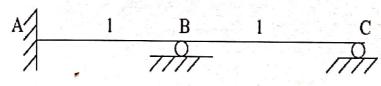

Joint	Member	Relative stiffness	Sum of Relative stiffness	Distribution factor
A	AB	4EI/L	4EI/L	(4EI/L)/(4EI/L) = 1
В	BA	3EI/L	3EI/L + 4EI/L = 7EI/L	(3EI/L)/(7EI/L) = 3/7
	BC	4EI/L		(4EI/L)/(7EI/L) = 4/7
C	CB	4EI/L	4EI/L+ 4EI/L=8EI/L	(4EI/L)/(8EI/L) = 4/8
- H	CD	4EI/L		(4EI/L)/(8EI/L)=4/8
D	DC	4EI/L	4EI/L	(4EI/L)/(4EI/L) = 1

23. Show the ratio of sway moments at column heads when one end is fixed and the otherend hinged. Assume that the length and M.I of both legs are equal.

UNDERSTAND BT-L2

CO3

Assuming the frame to sway to the right:



Ratio of sway moments =

$$\frac{M_{BA}}{M_{CD}} = \frac{-\frac{(6El\delta)}{l^2}}{-\frac{3El\delta}{l^2}} = 2$$

A beam is fixed at A and simply supported at B and C. AB = BC = 1. Flexural rigidities of AB and BC are 2EI and EI respectively. Find the distribution factors at joint B if no moment is to be transferred to support C.

UNDERSTAND CO3 BT-L2

Joint B: Relative stiffness: $I_{1-} = 2I$ for BA. $K_{BA} = 2$

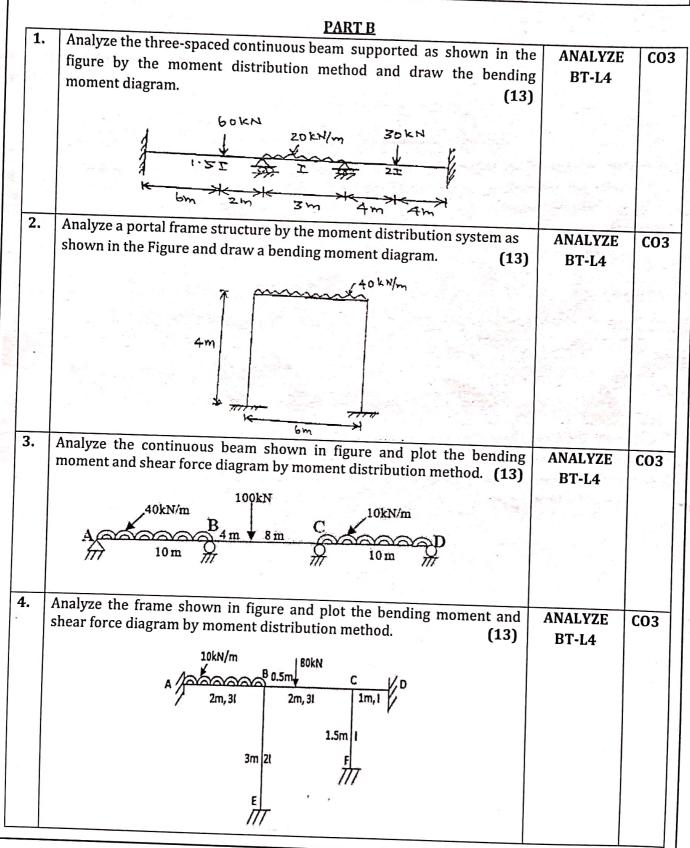
$$K_{BA}=2$$

 $\frac{3}{4} \times I_{+} = \frac{3I}{4l}$ for BC $K_{BC} = \frac{3}{4} = 0.75$

$$K_{BC} = \frac{3}{4} = 0.75$$

Distribution factors:

 $\frac{K_{BA}}{K_{BA} + K_{BC}} = \frac{2}{2 + 0.75} = 8/11 = 0.727$ DF for BA:


 $\frac{K_{BC}}{K_{BC} + K_{BA}} = \frac{0.75}{2 + 0.75} = 3/11 = 0.273$ DF for BC:

А	25	What are the advantage CN Subject Code / Name: CE3	502 / STRUCTURAL A	NALYSIS I
	20.	What are the advantages of Naylor's simplification?	REMEMBER	CO3
	The	advantages of Naylor's simplification are:	BT-L1	
		It is suited to frame, especially multistory frames		

It is suited to frame, especially multistory frames.

It can handle symmetric frames with any loading since it can analyze completely symmetric and antisymmetric loading components.

In this method sway analysis is completely avoided.

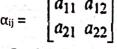
5.			
	Analyze the continuous beam ABC shown in figure by moment distribution method. Take EI = constant. (13) 3 kN/m 15 kN 3.5 m	ANALYZE BT-L4	CO3
6.	Analyze the portal frame ABCD shown in fig. by moment distribution method. (13)	ANALYZE BT-L4	CO3
	B 1m 2m 1m 1.51 4m		
7.	Analyze the frame above in Grand land		
2	Analyze the frame shown in figure by moment distribution method. (13) 8 kN/m 5 I	ANALYZE BT-L4	CO3
	5m SEI EI 3m 5m		
	7777		
8.	Determine the support moment for the beam shown in fig. by moment distribution method and sketch the BMD. (13)	APPLY BT-L3	CO3
	2 m 4 m 2 m		
9.	Analyze the continuous beam given in figure by moment distribution method. (13) A 10 kN/m B C (13)	ANALYZE BT-L4	CO3
9.	method. (13) A 10 kN/m B C		CO3

Subject Code / Name: CE3502 / STRUC	CTURAL ANALYSIS
1. A continuous beam ABC 24m long is fixed at A, simply supported at B A	PPLY CO3
and C. The intermediate support B is at 12m from A and sinks by 30mm.	T-L3
The span AB carries a uniformly distributed load of 3kN/m and the span	- 20
BC is subjected to a point load of 24 kN at 8m from C. Use moment	
distribution method and draw the shearing force and bending moment	- 2
diagrams. Take the flexural rigidity EI as 40,000 kN-m ² and is constant	12
throughout	1
AN	ALYZE CO3
B, C and D at 4m, 10m and 16m respectively from the left end A and the	T-L4
portion DE being overhanging over 2m. The span AB carries a point load	
of 40 kN at its mid-span, the span BC is subjected to a uniformly	1.74
distributed load of 12kN/m, the span CD carries a point load of 60 kN at	
2m from C and the free end (E) carries a point load of 10 kN. Analyze the	
beam by moment distribution method and draw the shearing force and	-
bending moment diagrams. Consider the flexural rigidity for the portions	
AB, BC and CD, DE as EI, 3EI and 2EI, 2EI respectively. (13)	
Analyza the newtal former at the	ALYZE CO3
mothed and draw the handing	,
in complaint formall all.	Γ-L4
(13)	
50 kN	6.
4 m	
1 3 m 5 m 2 25 m	
3 m 5 m 2.25 m	S. 134
. Analyze the continuous beam loaded as shown in figure by the ANA	" and the
ANA	LYZE CO3
method of moment distribution. Draw the bending moment and shear BT	'-L4
force diagrams. (13)	
80kN Sokhi	F 1.
20kN/m	
2m 7 2m 2m 2m 2m 2m	
B El Constant C D	
Analyze the portal frame ABCD with ends A and D are hinged Joints B	
APP	
and C are rigid, span AB = CD = 4 meters. Span BC = 6 meters. A uniformly distributed lead of Clab (meters). BC = 6 meters. A BT.	·L3
uniformly distributed load of 8 kN/m acts on the span BC. Determine the	
bending moments at the supports. Using moment distribution method.	
(13)	
A continuous beam ABCD consists of three spans with fixed supports on APF	PLY CO3
hoth ends and simple supports at D and C Coast AD 7 DC 4	
both ends and simple supports at B and C. Span AB = 7m, BC = 6m and BT-	·L3
CD = 6m. An udl of 3 kN/m acts on AB. A point load of 6 kN acts at 3 m	·L3
CD = 6m. An udl of 3 kN/m acts on AB. A point load of 6 kN acts at 3 m	·L3
CD = 6m. An udl of 3 kN/m acts on AB. A point load of 6 kN acts at 3 m from B. A point load of 9 kN acts at the mid span of CD. El are I, 2I and I	·L3
CD = 6m. An udl of 3 kN/m acts on AB. A point load of 6 kN acts at 3 m	·L3

PART C		
Analyze the sway frame shown in the figure using moment distribution	ANALYZE	C03
CALL T	D1-L4	
4 m	Company A.	The same of the sa
		1 10000
		1
3m 3m	and the state of the state of	
מחומו ווחומו		× .
El Constant	light in the Salah	
Analyze the frame loaded as shown in figure by the moment distribution	ANALYZE	C03
	BT-L4	
		- 48
A COMMON		,AL
21 21		
1 21 1		
		105×20
		September 1
5 m 5 m		
Analyze the continuous beam ABC shown in figure by moment	ANALYZE	C03
	BT-L4	. kr. s
= constant. (15)		
5 LN S LN		inc.
A 3m 2m 2.5m 2.5m		
\frac{1}{2}		
Analyze the beam by using moment distribution method and draw	ANALYZE	CO3
	BT-L4	- m-1
2011		.,
100kN		1
B		
A 3m		
		<u> </u>
5m		
11		1
- 1		
		1
	Analyze the sway frame shown in the figure using moment distribution method. (15) Reconstant Property	Analyze the sway frame shown in the figure using moment distribution method. (15) ANALYZE BT-L4

UNIT IV FLEXIBLITY METHOD PART A

1. Write about flexibility matrix method. REMEMBER CO4 BT-L1 In flexibility matrix method, the forces in the structure are treated as unknowns. The no of equations involved is equal to the degree of static indeterminacy of the structure. This method is also called as force method. What do you mean by joint translation? 2. REMEMBER **CO4** BT-L1 In a structure, yielding may occur at the end due to the action of external loads over the structure. This yielding at the end support will cause an unequal amount of displacement. This type of relative settlement phenomenon between the fixed supports is known as joint translation. What is a rigid frame? REMEMBER CO4 BT-L1 A rigid frame is a structural configuration consisting of a frame in which the connections between all of the frame pieces are fixed at particular angles that do not change. Its members can take bending moment, shear and axial loads. What are flexibility coefficients? REMEMBER **CO4** A Flexibility coefficient aij is defined as the displacement at joint 'i' due to a unit load at joint 'j' while all other joints are unloaded. The constant 'a' is known as flexibility of the structure and it has a unit of displacement per unit force. 5. What is a primary structure? REMEMBER **CO4** BT-L1 A primary structure is defined as a structure formed by removing the excess or redundant restraints from an indeterminate structure, making it statically determinate. This is required for solving indeterminate structures by flexibility matrix method. What do you mean by static and kinematic indeterminacy? REMEMBER **CO4** BT-L1 If the equilibrium equations are not sufficient to analyze the structure for the unknown forces, the structure is said to be statically indeterminate and is called static indeterminacy. When a structure composed of several members is subjected to loads, the joints undergo displacements in the form of rotation and translation. The number of independent joint displacements in the structure is called the degree of kinematic indeterminacy. Define force transformation matrix. REMEMBER **CO4** BT-L1 The force transformation matrix is defined as the connectivity matrix which relates the internal forces Q and the external forces R. Writing it in a matrix form, ${Q} = [b]{R}$ Where, Q = member force matrix/vector b = force transformation matrix R = external force/load matrix/ vector Mention any two method of determining the joint deflection of a 8. REMEMBER **CO4** perfect frame. BT-L1 The methods of determining the joint deflection of a perfect frame are, Dummy unit load method.


• Using the principle of virtual work.

9. Write down the equation for the de the pin-jointed frames, explaining the	gree of static indeterminacy of ne notations used.	REMEMBER BT-L1	CO4
 Total indeterminacy = External indeterminacy = No. of reaction Internal indeterminacy = m-2j-3 			
10. Compare determinate structure with	n indeterminate structure.	UNDERSTAND BT-L2	CO4
Determinate structure	Indeterminate stru	ıcture	1.00
 Determinate structures are analyzed just by the use of basic equilibrium equations (∑H = 0; ∑V = 0; ∑M = 0). By this analysis, the unknown reactions are found for the further determination of stresses. 	 Redundant or indeterming capable of being analyzed equilibrium equations. Along with the basic equilibrium extra conditions are like compatibility conditions etc to get the unknown rebending moment and sheet. Usually Matrix methods a 	I by mere use of b librium equations e required to be u ons of deformatio eactions for drawi ar force diagram.	asic s, sed ns
11. Why flexibility method is also called force method?		REMEMBER BT-L1	CO4
Flexibility method begins with the superposition of compatibility method.			
12. Define Degree of Freedom and expla	in its types.	REMEMBER BT-L1	C04
 a) Nodal type DOF: This includes the DO moment, at a section where moment of inert two or more members. b) Joint type DOF: This includes the DOF a roller support and junction of two or more members. 	cia changes, hinge support, roller s		the to the same of
		tia changes, hing	
13. Define local and global coordinates.		REMEMBER	
13. Define local and global coordinates. Local coordinates: Coordinates defined alor Global coordinates: Common coordinate s	nembers. ng the individual member axes loc	REMEMBER BT-L1 ally.	e and
13. Define local and global coordinates. Local coordinates: Coordinates defined alor	nembers. Ing the individual member axes loc ystem dealing with the entire str	REMEMBER BT-L1 ally.	e and
 Define local and global coordinates. Local coordinates: Coordinates defined alor Global coordinates: Common coordinate sknown as system coordinates. What is the relation between the finatrix? The relation between the flexibility matrix and the system coordinates. 	nembers. In the individual member axes loc ystem dealing with the entire structure and stiffness	REMEMBER BT-L1 ally. ucture. These are REMEMBER BT-L1	CO4
 13. Define local and global coordinates. Local coordinates: Coordinates defined alor Global coordinates: Common coordinate sknown as system coordinates. 14. What is the relation between the finatrix? The relation between the flexibility matrix and when they both exist in a structure. 15. What is meant by force method in structure. 	ng the individual member axes loc ystem dealing with the entire str lexibility matrix and stiffness and stiffness matrix is that, one is the	REMEMBER BT-L1 ally. ucture. These are REMEMBER BT-L1 ne inverse of the o	cO4 CO4 CO4
 13. Define local and global coordinates. Local coordinates: Coordinates defined alor Global coordinates: Common coordinate sknown as system coordinates. 14. What is the relation between the finatrix? The relation between the flexibility matrix as when they both exist in a structure. 	ng the individual member axes loc ystem dealing with the entire str lexibility matrix and stiffness and stiffness matrix is that, one is the	REMEMBER BT-L1 ally. ucture. These are REMEMBER BT-L1 ne inverse of the o	cO4 CO4 CO4
 13. Define local and global coordinates. Local coordinates: Coordinates defined alor Global coordinates: Common coordinate sknown as system coordinates. 14. What is the relation between the finatrix? The relation between the flexibility matrix as when they both exist in a structure. 15. What is meant by force method in structure. A method in which the forces are treated as 	ng the individual member axes loc ystem dealing with the entire str lexibility matrix and stiffness and stiffness matrix is that, one is the	REMEMBER BT-L1 ally. ucture. These are REMEMBER BT-L1 ne inverse of the o	cO4 CO4 CO4

16. Differentiate pin-jointed plane frame and rigid jointed plane UNDERSTAND BT-L2 Pin jointed frame Rigid jointed frame • The joints permit change of angle between The members connected at a rigid joint will connected members.

- The joints are incapable of transferring any moment to the connected members and vice-versa.
- The pins transmit forces between connected members by developing shear.
- maintain the angle between them even under deformation due to loads.
- Members can transmit both forces and moments between themselves through the
- Provision of rigid joints normally increases the redundancy of the structures.
- 17. Write down the flexibility matrix for a simply supported beam UNDERSTAND with reference to coordinates shown in figure.

$$\alpha_{ij} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

 α = flexibility matrix

 α_{11} = the displacement at 1 due to a unit force at 1

 α_{21} = the displacement at 2 due to a unit force at 1

 α_{ij} = the displacement at i due to a unit force at j

of indeterminacy of the following.	UNDERSTAND	CO4
	BT-L2	

hinge

No. of reaction R = 3+3=6

18. Find degree

No. of static equilibrium equations + hinge = 3 + 2 = 5

Degree of indeterminacy = 6 - 5 = 1

19. Define flexibility of a structure.

REMEMBER BT-L1

CO4

The flexibility of structure is defined as that a structure can be pre-defined by a set of co- ordinates. Each element of a flexibility matrix represents a displacement at a co-ordinate due to a force at a coordinate it is called flexibility of structure. In general flexibility of a structure is the displacement caused by a unit force.

$$f = \frac{\delta}{P}$$
 or $f = \frac{\theta}{M}$

where, f = Flexibility, $\delta = Displacement$, P = Force, $\theta = Rotation$, M = Moment

20. Write the element flexibility matrix for a truss member. REMEMBER **CO4** BT-L1

The element flexibility matrix for a truss member is as follows:

$$f = \frac{L}{6EI} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

Give the mathematical expression for the degree of static REMEMBER **CO4** indeterminacy of rigid jointed plane frames. BT-L1

The mathematical expression for the degree of static indeterminacy of rigid jointed plane frames is as follows:

Degree of static indeterminacy = (No. of closed loops x 3) – No. of releases

22. Find the degree of indeterminacy of a propped cantilever beam.

REMEMBER BT-L1

For propped cantilever, along with the cantilever reactions there will also be a reaction from the free

For propped cantilever, along with the cantilever reactions there will also be a reaction from the free end. But, there are only three equilibrium equations. Therefore,

Degree of indeterminacy = Number of reaction - Number of equilibrium equations

i.e, Indeterminacy = 4-3=1

Hence, a propped cantilever has one degree of indeterminacy.

23.	What are the properties which characterize the structure response		CO4
	by means of force- displacement relationship?	BT-L1	

The following conditions are the properties of force-displacement relationship:

- The force and displacement are interrelated quantities
- Force including moments, stresses, reaction, etc.,
- Displacements including rotations, strains, twists, etc.,
- Displacements take place due to forces or forces consistent with displacements.
- The relationship of each element must satisfy the stress-strain relationship of the element material.

24.	Write the formulae for degree of indeterminacy for trusses and	REMEMBER BT-L1	CO4
	frames.	BI-FI	

The formula for degree of indeterminacy are as follows:

Two dimensional pin jointed truss (2D Truss)

$$i = (m+r) - 2j$$

Two dimensional rigid frames/plane rigid frames (2D Frames)

$$i = (m+r) - 3j$$

Three dimensional space truss (3D Truss)

$$i = (m+r) - 3j$$

• Three dimensional space frames (3D Frame)

$$i = (6m+r) - 6j$$

where.

m = no of membersr = no of reactionsj = no of joints

25. Define internal and external indeterminacies REMEMBER BT-L1

Internal indeterminacy: Internal indeterminacy (I.I.) is the excess no of internal forces present in a member that make a structure indeterminate.

External indeterminacy: External indeterminacy (E.I.) is excess no of external reactions in the member that make the structure indeterminate.

Indeterminacy = I.I. + E.I.

$$E.I. = r - e$$

where,

r = no of support reactions

e = equilibrium conditions

$$I.I. = i - EI$$

where,

e = 3 (plane frames)

e = 6 (space frames)

	PART B		WILISIS
1.	Analyze the continuous beam ABC as shown in the following figure by the flexible matrix method and draw the bending moment diagram. (13)	ANALYZE BT-L4	CO4
unha	24 kN 12 kN C		
2.	Analyze the continuous beam shown in the figure by the flexiblity matrix method and draw the bending moment diagram. (13) 100 KN 60 KN/m A B	ANALYZE BT-L4	CO4
	—1.5 m ————4 m ————————————————————————————		
3.	Analyze the continuous beam shown in the figure by direct flexibility approach. Take El constant throughout. (13) 100kN	ANALYZE BT-L4	CO4
	A 4 m B 3 m C		
4.	Analyze the continuous beam shown in the following figure by the flexible matrix method and draw the bending moment diagram. 100 KN 60 KN/m A B C B C C C C C C C C C C	ANALYZE BT-L4	CO4
	-1.5 m 4 m		
5.	Analyze the beam ABC shown in figure by flexibility matrix method. (13)	ANALYZE BT-L4	CO4
	6 m 5 m		*
6.	Analyze the continuous beam shown in figure by flexibility approach. El is constant throughout. (13) 5 kN 8 kN 3 m 2 m 2.5 m 2.5 m	ANALYZE BT-L4	CO4
	A 3 m 2 m		

Ē			Subject Code / Name: CE3502 / S	TRUCTURAL AN	VALYSIS I
100	• Annual .	7.	Analyze the pin-jointed plane frame shown in figure by flexibility matrix method. Theflexibility for each member is constant. (13)	ANALYZE BT-L4	C04
1	37		IO KN		
	-		5kN B2		
			61		
1		1			
	1		4m		
1		7			24
			An Az		
		8.	Analyze the truss shown in figure by flexibility approach. AE is constant	ANIALVZE	CO4
			for all members. (13)	ANALYZE BT-L4	LU4
		and the same	6 kN	D. D.	
1	9		B _N		
١	-				
	- 0	- Er	5 m		3
			A 5 m D		
1		9.	Examine the moment of portal frame ABCD shown in figure using by	APPLY	CO4
			flexibility matrix method.	BT-L3	104
			20 kN/m		F. E.
			40 kN - B C		
١					
			EI CONST 4 m		
2	edi av		6 m		
			$ \cdot $		
			A		
		1	7/17/1		
		10.	Analyze the frame given in figure by flexibility matrix method or force	ANALYZE	COA
8			method. Take El asconstant. (13)	BT-L4	CO4
l			20 kN/m		
			30 kW		
			B 4m C		
			6m 4m		1
		-			1
l			$\sqrt{\mathbf{D}}$		
l			A		
l			El const		
		11.	Find the forces in the members of a pin jointed plane frame shown in	APPLY	CO4
			figure by flexibilitymatrix method. AE is constant for all the members. (13)	BT-L3	
			10 kN	-	141
			B NG 5 kN	-	_ =
			No. 3 KIV	-	_
			4 m		
			5 m + + + + + + + + + + + + + + + + + +		
			7777 3 III 7177		

		Subject code / Name: CL3302 / 31	NOCTOTAL AIVA	LISIS
1:	2.	Analyze the continuous beam shown in figure using force methods. (13) 100 kN 1.5m 1.5m 4m EI const	ANALYZE BT-L4	CO4
1	.3.	Analyze the beam given in figure by flexibility matrix method. (13) 24 KN 12 KN 5 m 5 m 5 m 5 m 1	ANALYZE BT-L4	CO4
1	l 4.	A cantilever of length 15 meters is subjected to a single concentrated load of 50 kN at the middle of the span. Find the deflection at the free end using flexibility matrix method. EI is uniform throughout. (13)	APPLY BT-L3	CO4
1	15.	A two span continuous beam ABC is fixed at A and hinged at supports B and C. Span of AB = span of BC = 6 m. Interpret flexibility influence co-efficient matrix assuming vertical reaction at B & C as redundant. (13)	APPLY BT-L3	CO4

PART C

1.	Analyze the continuous beam ABC shown in figure by flexibility matrix method and sketch thebending moment diagram. (15)	ANALYZE BT-L4	CO4
	4 kN/m 12 kN		
2.	Analyze the continuous beam ABC shown in figure by flexibility matrix method and sketch thebending moment diagram. (15)	ANALYZE BT-L4	CO4
	5 m Harry 6 m		
3.	Analyze the continuous beam shown in figure using flexibility matrix method. (15)	ANALYZE BT-L4	CO4

UNIT V STIFFNESS METHOD PART A

	1.	Write about stiffness matrix method.	REMEMBER	CO5						
	0.10		BT-L1							
	Stif	fness matrix method is also called the displacement method in which	the displacement	s that						
	occ	nts involved is eq	ual to							
	the	number of degrees of freedom of the structure.	,							
	2.	Define stiffness coefficient.	REMEMBER BT-L1	CO5						
	A S	diffness coefficient k_{ij} is defined as the force developed at joint i due to a un	it displacement a	t joint						
	'j' while all other joints are fixed. The constant 'k' is known as stiffness of the structure and it has a									
unit of force per unit displacement.										
	3.	Define the term rigidity of a structure.	REMEMBER BT-L1	CO5						
	Rig	dity is the property of a structure that it does not bend or flex under	an applied force	. The						
	opp	osite of rigidity is flexibility. The term 'stiffness' refers to the rigidity of a	structural eleme	nt. In						
,	gen	eral rigidity is the extent to which the element is able to resist deformati	on or deflection	under						
	the	action of an applied force.		NAC.						
	4.	Why the stiffness matrix method is also called equilibrium method	REMEMBER	CO5						
		or displacement method?	BT-L1	- "						
	Stif	fness method is based on the superposition of displacements and hence	is also known a	s the						
		placement method and since it leads to the equilibrium equations, the me	thod is also know	wn as						
		ilibrium method.								
塘.	5.	What is the basic aim of the stiffness method?	REMEMBER BT-L1	CO5						
	The	aim of the stiffness method is to evaluate the values of generalized coord	linates 'r' knowin	g the						
	stru	cture stiffness matrix 'K' and nodal loads 'R' through the structure equilibr	ium equation.							
	_	$\{R\} = [K] \{r\}$								
	6.	Write about static indeterminacy of a structure.	REMEMBER BT-L1	CO5						
	The	excess number of reactions that make a structure indeterminate is called s	tatic indetermina	cy.						
		Static indeterminacy = No. of reactions – Equilibrium conditi								
	7.	How the basic equations of stiffness matrix obtained?	REMEMBER BT-L1	CO5						
	The	basic equations of stiffness matrix are obtained as								
		Equilibrium forces								
		 Compatibility of displacements 								
		 Force displacement relationships 								
	8.	Write about generalized coordinates.	UNDERSTAND BT-L2	CO5						
		generalized coordinates is defined as specifying a configuration of a syste								
		ber of independent coordinates are necessary. The least number of ind	-,	nates						
	that	are needed to specify the configuration is known as generalized coordinate	es.							
	9.	Write the formula for the size of the global stiffness matrix.	REMEMBER BT-L1	CO5						
	The	formula for the size of the global stiffness matrix is as follows:								
		The size of the global stiffness matrix (GSM) = No of nodes x Degrees of from	eedom per node.							
L			•							

Subject Code / Name: CE3502 / STRUCTURAL ANALYSIS

10. Write the relationship between stiffness matrix and flexibit matrix.		
The element stiffness mat :		R CO
The element stiffness matrix is the inverse of element stiffness matrix and $f = 1/l_0$	vice versa.	
where, f = flexibility matrix k = stiffness matrix		
11. Define the perfect frame with an example.	REMEMBER BT-L1	
A perfect frame may be defined as that one which is made up of members frame in equilibrium, when loaded without any change in the		700m 4la
perfect frame is a triangle.	he simplest exam	ple of
12. Define displacement vector. The displacement vector of an alice to the displacement vector of an alice to the displacement vector.	REMEMBER BT-L1	
The displacement vector of an object is defined as the vector distance from the distance traveled expline motion. 13. What is Rotation matrix?	pect in the case of s	int to a
	REMEMBER BT-L1	CO5
$R = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$ where R is the Rotation matrix. Rotation matrices can only be used to desprigin of the coordinate system. Rotation matrices can only be used to desprigin of the coordinate system.	Cribe rotations abo	
		out the ations,
and are used extensively for analysis of both determinate and indeterminate List the properties of the stiffness matrix	eription of such rotestructures. REMEMBER	cos
and are used extensively for analysis of both determinate and indeterminate 4. List the properties of the stiffness matrix The properties of the stiffness matrix are,	cription of such rot estructures.	ations,
And are used extensively for analysis of both determinate and indeterminate List the properties of the stiffness matrix The properties of the stiffness matrix are, It is a symmetric matrix The sum of elements in any column must be equal to zero. It is an unstable element therefore the determinant is equal to zero.	eription of such rote structures. REMEMBER BT-L1	ations,
A. List the properties of the stiffness matrix The properties of the stiffness matrix are, It is a symmetric matrix The sum of elements in any column must be equal to zero. It is an unstable element therefore the determinant is equal to zero. Is it possible to develop the flexibility matrix for an unstable structure?	REMEMBER BT-L1 REMEMBER BT-L1	CO5
And are used extensively for analysis of both determinate and indeterminate 4. List the properties of the stiffness matrix The properties of the stiffness matrix are, It is a symmetric matrix The sum of elements in any column must be equal to zero. It is an unstable element therefore the determinant is equal to zero. Is it possible to develop the flexibility matrix for an unstable structure? The sum of elements in any column must be equal to zero. Is it possible to develop the flexibility matrix for an unstable structure? The sum of elements in any column must be equal to zero. Is it possible to develop the flexibility matrix for an unstable structure exibility matrix for a structure, it has to be stable and determinate.	REMEMBER BT-L1 REMEMBER BT-L1 REMEMBER BT-L1	CO5
A. List the properties of the stiffness matrix The properties of the stiffness matrix are, It is a symmetric matrix The sum of elements in any column must be equal to zero. It is an unstable element therefore the determinant is equal to zero. Is it possible to develop the flexibility matrix for an unstable structure? O, it is not possible to develop the flexibility matrix for an unstable exibility matrix for a structure, it has to be stable and determinate Write down the equation of element stiffness matrix as applied to 2D plane element.	REMEMBER BT-L1 REMEMBER BT-L1 REMEMBER BT-L1	CO5
and are used extensively for analysis of both determinate and indeterminate 4. List the properties of the stiffness matrix The properties of the stiffness matrix are, It is a symmetric matrix The sum of elements in any column must be equal to zero. It is an unstable element therefore the determinant is equal to zero. Is it possible to develop the flexibility matrix for an unstable structure? The sum of element therefore the determinant is equal to zero. The sum of element therefore the determinant is equal to zero. The sum of element therefore the determinant is equal to zero. The sum of element therefore the determinant is equal to zero. The sum of element therefore the determinant is equal to zero. The sum of element therefore the determinant is equal to zero. The sum of element therefore the determinant is equal to zero. The sum of element therefore the determinant is equal to zero. The sum of element therefore the determinant is equal to zero. The sum of element therefore the determinant is equal to zero. The sum of element therefore the determinant is equal to zero. The sum of element therefore the determinant is equal to zero. The sum of element therefore the determinant is equal to zero. The sum of element therefore the determinant is equal to zero. The sum of element therefore the determinant is equal to zero. The sum of element therefore the determinant is equal to zero. The sum of element therefore the determinant is equal to zero. The sum of element is a symmetric matrix are, The sum of element is a symmetric matrix are, The properties of the stiffness matrix are, The properti	REMEMBER BT-L1 REMEMBER BT-L1 REMEMBER BT-L1	CO5 CO5
Indicate and are used extensively for analysis of both determinate and indeterminate and indeterminat	REMEMBER BT-L1 REMEMBER BT-L1 REMEMBER BT-L1	CO5 CO5
The properties of the stiffness matrix are, It is a symmetric matrix The sum of elements in any column must be equal to zero. It is an unstable element therefore the determinant is equal to zero. It is not possible to develop the flexibility matrix for an unstable structure? It is not possible to develop the flexibility matrix for an unstable structure exibility matrix for a structure, it has to be stable and determinate Write down the equation of element stiffness matrix as applied to 2D plane element. $K = \frac{EI}{L} \begin{bmatrix} 4 & 2 \\ 2 & 4 \end{bmatrix}$ The nere, k is the stiffness L is the length of the member & EI is the flexural rigidity	REMEMBER BT-L1 REMEMBER BT-L1 REMEMBER BT-L1	CO5 CO5
Indicate and are used extensively for analysis of both determinate and indeterminate and indeterminat	REMEMBER BT-L1 REMEMBER BT-L1 REMEMBER BT-L1 REMEMBER BT-L1	CO5 p the CO5

Subject Code / Name: CE3502 / STRUCTURAL ANALYSIS I 18. Write the element stiffness for a truss element. REMEMBER **CO5** BT-L1 The element stiffness matrix for a truss element is given by, k = EA/Lwhere, k is the stiffness E is the Young's Modulus A is the cross-sectional area of the element & L is the length of the element 19. Compare the flexibility and stiffness matrix method. UNDERSTAND BT-L2 Flexibility matrix method Stiffness matrix method The redundant forces are treated as basic The joint displacements are treated as basic unknowns. unknowns. The number of equations involved is equal to The number of displacements involved is equal the degree of static indeterminacy of the to the no of degrees of freedom of the structure. structure. The method is the generalization of consistent The method is the generalization of the slope deformation method. deflection method. Different procedures are used for determinate • The same procedure is used for both and indeterminate structures. determinate and indeterminate structures. 20. Write a short note on global stiffness matrices. REMEMBER

BT-L1

CO5

The global stiffness matrix can be obtained by summing the stiffness matrix for each element, the formulation is

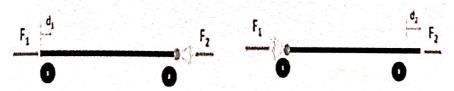
where.

 $K = \sum_{i=1}^{N} k^{(e)}$

K = Global stiffness matrix

k = Local element matrix

N = Total number of element


e = Index

21. Mention the stiffness coefficient for an axial element.

UNDERSTAND BT-L2

CO5

For an axial member shown below stiffness coefficient is given by:

$$F_{1} = \frac{AE}{L}d_{1} - \frac{AE}{L}d2 \qquad \begin{cases} F_{1} \\ F_{2} \end{cases} = \frac{AE}{L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{Bmatrix} d_{1} \\ d_{2} \end{Bmatrix}$$

$$F_{2} = \frac{-AE}{L}d_{1} + \frac{AE}{L}d2 \qquad \begin{cases} F_{1} \\ F_{2} \end{cases} = \begin{bmatrix} k_{11} & k_{12} \\ k_{21} & k_{22} \end{bmatrix} \begin{Bmatrix} d_{1} \\ d_{2} \end{Bmatrix}$$

 $k_{11} = k_{22} = AE/L$

 $k_{21} = k_{12} = -AE/L$

where, k_{11, k} _{22,} k_{21,} k ₁₂ are the stiffness coefficients.

Subject Code / Name: CE3502 / STRUCTURAL ANALYSIS I

Write about stability of a structure.

REMEMBER BT-L1

CO5

CO5

The stability of structure includes external stability and internal stability. The external stability deals with support reaction whereas internal stability deals within the structure.

23. For the truss shown below, what is the DOF?

UNDERSTAND BT-L2

For a pin-jointed plane frame/truss

$$DOF/Dk = 2j - r$$

where, r = no of reactions; j = no of joints

24. Develop the stiffness matrix for a simply supported beam.

UNDERSTAND CO5 BT-L2

The stiffness matrix for a simply supported beam is as follows:

Second column:

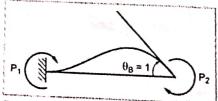
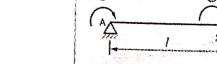



Diagram for 2nd column of stiffness matrix

$$P_{12} = \frac{2 E I \theta_{B}}{l} = \frac{2 E I}{l}$$
and
$$P_{22} = \frac{4 E I \theta_{B}}{l} = \frac{4 E I}{l}$$

$$\therefore k = \begin{bmatrix} \frac{4 E I}{l} & \frac{2 E I}{l} \\ \frac{2 E I}{l} & \frac{4 E I}{l} \end{bmatrix}$$
when $\theta_{A} = 1$, and

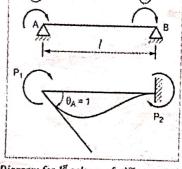
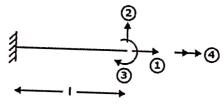


Diagram for 1st column of stiffness matrix

$$P_{11} = \frac{4 E I \theta_A}{l} = \frac{4 E I}{l}$$


$$P_{21} = \frac{2 E I \theta_A}{l} = \frac{2 E I}{l}$$

where k is the stiffness matrix

25. Show the stiffness for various cases of a structure.

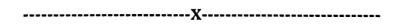
UNDERSTAND CO5 BT-L2

Stiffness for various cases are as follows:

(1) Axial stiffness
$$(k_{11}) = \frac{AE}{I}$$

(2) Transverse stiffness
$$(k_{22}) = \frac{12EI}{I^3}$$

(3) Flexural stiffness
$$(k_{33}) = \frac{4EI}{I}$$


(4) Torsional stiffness
$$(k_{44}) = \frac{GJ}{I}$$

•		PART B		
,	1.	Analyze the portal frame ABCD using stiffness method shown in figure and draw the bending moment diagram. (13)	ANALYZE BT-L4	CO5
		30 kN 30 kN/m B 2 m C		
		A El = constant 4m		
	2.	Analyze the frame shown in figure by the matrix stiffness method. (13) 30 kN/m 8m 2I 8m	ANALYZE BT-L4	COS
	3.	Analyze the beam shown in figure using direct stiffness approach. (13) A $\frac{10kN}{4m}$ B $\frac{10kN}{2.5m}$ C $\frac{4m}{4m}$ D	ANALYZE BT-L4	C05
	4.	Using the direct stiffness approach, analyze the frame shown in figure.(13) A 4m, I B 8m, 2I C 1.6m 120kN 31 3.2m	ANALYZE BT-L4	CO5
	5.	Analyze the beam ABC shown in figure by stiffness method. (13) 6 kN/m 10 kN A 4 4 4 4 4 4 4 4 4	ANALYZE BT-L4	C05
	6.	Interpret the moments for the beam shown in figure by stiffness method. El is constant for all members. (13) 6kN 2kN/m A 4m 4m B C	ANALYZE BT-L4	CO5

7.	Analyze the portal frame ABCD shown in figure by stiffness matrix method. (13)	ANALYZE BT-L4	CO5
	B C S KN/m C S M M C S M M M M M M M M M M M M M M	e de la companya de l	
	S m Ei ± const.		
	7777		
8.	Analyze the truss shown in figure by stiffness method. AE is constant for all members. (13)	ANALYZE BT-L4	CO5
	A B 11011 45°		
9.	ווא או מאנט ביין או או מאנט ביין או או מאנט ביין או מאנט	ANALYZE	CO5
	method and also draw the bending moment diagram. (13)	BT-L4	
10.	Analyze the continuous beam ABCD shown in figure by stiffness matrix method and also sketch the bending moment diagram. (13)	ANALYZE BT-L4	CO5
	4 m		
11.	Analyze the continuous beam shown in figure by stiffness method. Draw	ANALYZE	CO5

12.	Analyze the continuous beam shown in figure using stiffness matrix	ANALYZE	C05
	method. (13)	BT-LA	
	10kN/m 20kN	74 5	
	A TOWNS BY	1.58	
D ₁ =	7		
W 17	5 m 1 m 5 m		
	3m 1m 3m		
13.	Interpret the frame given in figure by stiffness matrix method. AE is equal	ANALYZE	COS
	to unity. (13)	BT-L4	
	P.	12	
71	/45°	-	
		-	
	LI L2 L3	- 8	
		ine.	
	A R		
	7/7 2m 7/7 2m		
			775- A.S.
14.	Analyze the pin – jointed truss shown in by using stiffness method. Area of	ANALYZE	C05
14.	cross section for all members =1000 mm2 and modulus of elasticity	BT-L4	
	(40)		
	E=200kN/mm ² . (13)		
* A	30* 45*		
	2.5 m		
	50 kN		
	, V _{40 kN}		
4=	A two span continuous beam ABC is fixed at A and simply supported over	ANALYZE	CO5
15.	the supports B and C.AB = 10 m and BC = 6 m. Moment of inertia is	BT-L4	
	constant throughout. A single concentrated load of 12 Tons acts over AB		
	and a uniformly distributed load of 11 Ton/m acts over BC. Analyze the		
	heam by stiffness matrix method. (13)	-	
16.	Analyze the portal frame ABCD shown in figure using by stiffness matrix	ANALYZE	CO5
	method. (13)	BT-L4	
	20 RITY III		
	40 kN B 4 m C		
	4 m		
	EI CONST D		
	6 m		
	A		
1	77777		
1	5.7.6.7		

1.	Analyze the continuous heam ARC of figure using the stiffs and the	and the second second	CO5
	Analyze the continuous beam ABC of figure using the stiffness method and also draw the bending moment diagram. (15)	ANALYZE BT-L4	CO
	10 KN 6 KN/m		
	The state of the s		
	├─1.5 m -├─1.5 m -├──4 m -──-		
2.	Analyze the portal frame ABCD shown in figure using stiffness method and also draw the bending moment diagram. (15)	ANALYZE BT-L4	COS
	B 2.5 m 2.5 m C		
	5 m El = constant 5 m		
7	2)		
3.	A two span continuous beam ABC is fixed at A and simply supported over the supports B and C. AB = 10 m and BC = 8 m. Moment of inertia is constant throughout. A single concentrated central load of 10 Tons acts on	ANALYZE BT-L4	CO5
	AB and a uniformly distributed load of 8 Ton/m acts over BC. Analyze the beam by stiffness matrix method. (15)		
	Analyze the portal frame ABCD shown in figure by Stiffness matrix method	ANALYZE	CO5
ł.	AND DEAW THE DEPOND MOMENT discress	The second secon	
1.		BT-L4	450
ŀ.	50 kN	BT-L4	
		BT-L4	
	50 kN	BT-L4	
1.	50 kN B 2m 2l 2m	BT-L4	

SA I 2.50

DEPARTMENT OF CIVIL ENGINEERING ACADEMIC YEAR 2023-24 (ODD SEM) BATCH (2021-2025) - STUDENT NAMELIST EM: III / V TOTAL STRENGTH: 21

YEAR/SEM: III / V

Roll No	Register Number	Student Name
1	821121103001	AKALYA J
2	821121103002	ANITHA B
3	821121103003	ARULPANDIYAN A
4	821121103004	ARUNKUMAR M
5	821121103006	MADHAN D S
6	821121103007	MANIKKARAJ R
7	821121103008	MATHANKUMAR S
8	821121103009	MOHAN S
9	821121103010	NAAVINIYAA G V
10	821121103012	PASHAGAN G (VOC)
11	821121103013	PRAGADISH M
12	821121103014	PRASANNA R
13	821121103015	SARAVANAN K
14	821121103016	SURYA.V
15	821121103017	TAMILARASAN T
16	821121103018	VENKATACHALAM D
17	821121103019	VIJAY S
18	821121103301	MOHAMMED RIYAS J
19	821121103302	SINDHU G
20	821121103303	SURUTHI A .
21	821121103701	SANJAIMANI M

CLASS COORDINATOR (Mr.K.ARUN)

HOD/CIVIL (Dr.R.SARAVANAN)

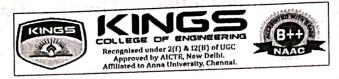
DEPARTMENT OF CIVIL ENGINEERING

TIME TABLE (JULY' 2023 - NOV' 2023, ODD SEM)

B.E - CIVIL (Reg. 21) - With Effect from 27.7.2023 - Tentative Last Working Day - 17.11.2023

Batch:2021 - 2025

Strength:21 Block: II


Y	ear: III		Seme	ster: V			Class R	oom: 235				Blocks
	Session	1	2 ~	10.45 am	3	4	12.30 pm	5	6	02.40 pm	7	8
-	Day	09.15am - 10.00am	10.00am - 10.45am	11.00 am	11.00am - 11.45am	11.45am - 12.30pm	01.10 pm	01.10pm 01.55pm	01.55pm - 02.40pm	02.50 pm	02.50pm - 03.35pm	
	MON	CE3502	MX3084		CE3503	CE3025		CE3005	CE3050		SP	ORTS
	TUE	CE3501	CE3501	× ±=	T&P (A)	CE3502	1 2	CE3050	CE3503	aK	CE3025	CE3005
	WED	CE3050	CE3005	AK.	CE3501	CE3025	BREAK	T&P(SS)	MX3084		CE3503	CE3502
	THU	CE3501	CE3503	BREAK	CE3502	NPTEL	LUNCH	VA	ic	BRE	GATE/¢	E CE3025
	FRI	CE3502	CE3050	1	CE3005	MX3084	11	CE	3511	4-1-	CF	23511
3 CINK 2	SAT	CE3025	CE3050		LIB/NET	CE3503		CE3501	CE3005	-		СС

SUB CODE	NAME OF THE SUBJECT	CATEGORY	CREDITS	NAME OF THE STAFF	DEPT	PE	RIODS/WEEK
	TUTORIAL (T), PROFESSIONAL ELE	CTIVE (PE),	VERTICAL	(V), MANDATORY COU	RSE(MC)		7.4
CE3501	Design of Reinforced Concrete structural Elements	PCC	3	Mr.A.Sagaya Albert	CIVIL		5
CE3502	Structural Analysis I	APCC -	43	Mr.K.Arun	CIVIL		5
CE3503	Foundation Engineering	PCC	3	Mrs.A.Suganya	CIVIL		5
CE3005	Rehabilitation/Heritage Restoration	PEC	3 (PE-I)	Mr.R.Sundharam	CIVIL	_	5
CE3025	Airports and Harbours	PEC	3 (PE-II)	Mr.R.Ramchandar	CIVIL	_	5
CE3050	Finance for Engineers	PEC	3 (PE-III)	Dr.K.Sudhakar	T&P		5
MX3084	Disaster Risk Reduction And Management	МС	0(MC-I)	Dr.B.Sureshbabu	Т&Р		3
		PRAC	TICAL				
CE3511	Highway Engineering Laboratory	PC	2	Mrs.A.Suganya	CIVIL		4
CE3512	Survey Camp	EEC	1	Mr.R.Sundharam	CIVIL		
	VALU	EADDITION	INTIATIVE	S (VAI)			
СС	Certification Course on AutoCADD		VAI	Mrs.A.Suganya	CIVIL		2
GATE / CE	GATE / Competitive Exam		VAI	Mr.A.Sagaya Albert	CIVIL		* 1
LIB/NET	Library / Internet		VAI	Mr.K.Arun	CIVIL		1
NPTEL	NPTEL Swayam Courses		VAI	Mr.K.Arun	CIVIL		1
S	Sports		IAV	Mr.K.Arun	CIVIL	Γ	2
T&P (A)	Training & Placement - Aptitude		VAI	Ms.P.Suganya	T&P		1
T&P(SS)	Training & Placement - Softskill		IAV	Dr.K.Sudhakar	T&P		1
VAC	Value Added Course on Urban Plannii	ng	IAV	Mr.D.Nandakumar	CIVIL		2

CLASS CO-ORDINATOR	NAME OF THE REPRESENTATIVES	ROLL NO
	J.Akalya	01
Mr.K.Arun	J.Mohammed Riyaz	18
CLASS COMMITTEE CHAIR PERSON	Mr.D.Nandakumar	

(2 Samulana) 20033

PRINCIPAL

DEPARTMENT OF CIVIL ENGINEERING

TIME TABLE (JULY' 2023 – NOV' 2023, ODD SEM)

B.E – CIVIL (Reg. 21) - With Effect from 27.7.2023 – Tentative Last Working Day – 17.11.2023

Staff Name: Mr.K.Arun / Asst.Prof

No.01 Perious / Week . 10

Session	1	2	10.45 am	3	4	12.30 pm	5	6	02.40 pm	7	8 03.35pm	
Day	09.15am	10.00am	- 11.00am	11.00am - 11.45am	11.45am - 12.30pm	01.10 pm	01.10pm - 01.55pm	01.55pm - 02.40pm	02.50 pm	02.50pm - 03.35pm	04.20pm	
MON	10.00am CE3502	10.45am		11,40	3			CE8711		SPORTS		
TUE	GESSOE	7			CE3502	AK				CE8		
WED			AK			BREAK			BREAK	CE8711 CE35		
THU			BREAK	CE3502	NPTEL	LUNCH			BR		711	
FRI	CE3502	5 29				3				CE8711 CE8711		
SAT				LIB/NET								

SUBJECT NAME	YEAR	CREDITS	WEEK
THEORY			
Structural Analysis I	III	3	5
PRACTICAL			
Creative and Innovative Project	IV	2	10
VALUE ADDED INITIATIVE	E (VAI)		
Library/Internet	III		f . 1
	III		1
Sports	III		2
	Structural Analysis I PRACTICAL Creative and Innovative Project VALUE ADDED INITIATIVE Library/Internet NPTEL/SWAYAM Online Course	Structural Analysis I PRACTICAL Creative and Innovative Project VALUE ADDED INITIATIVE (VAI) Library/Internet NPTEL/SWAYAM Online Course III	Structural Analysis I PRACTICAL Creative and Innovative Project VALUE ADDED INITIATIVE (VAI) Library/Internet NPTEL/SWAYAM Online Course III -

HOD 26/07/2023

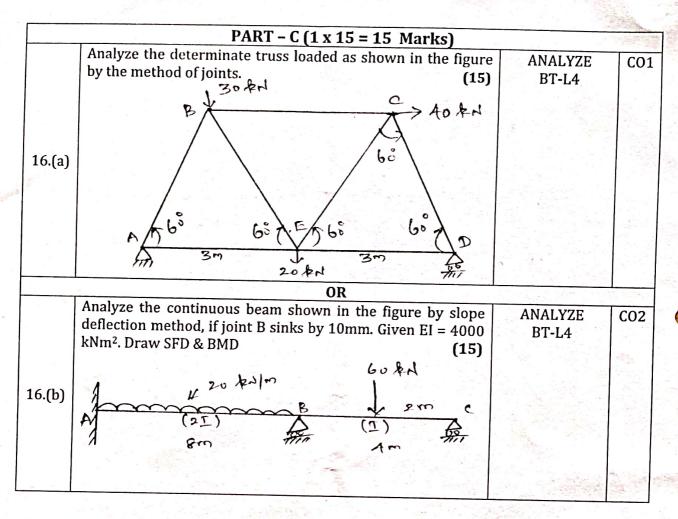
J. 100 26 7 2023 PRINCIPAL

KINGS COLLEGE OF ENGINEERING

CE3502-STRUCTURAL ANALYSIS I

Class / Sem : III CIVIL / 05

Date / Session: 16.09.2023/AN


Maximum: 100 Marks

Time: 01.10 p.m. - 04.10 p.m.

	Answer ALL questions		a -	
Q. No	PART - A (10 x 2= 20 Marks)			
	Question	BT Level	C	
1.	Outline determinate and indeterminate structures.	UNDERSTAND BT- L2	CC	
2.	What is meant by redundant frame and deficient frame?	REMEMBER BT-L1	CC	
3.	List the classification of frames.	REMEMBER BT-L1	CC	
4.	Define tension coefficient.	REMEMBER BT-L1	СО	
5.	State the assumptions made in the slope deflection method.	REMEMBER BT-L1	со	
6.	Write about the effect of support displacement in a structure.	UNDERSTAND BT- L2	СО	
7.	How many slope deflection equations are available for two span continuous beam?	UNDERSTAND BT- L2	СО	
8.	What is a sway frame?	REMEMBER BT-L1		
9.	Write about distribution factor.	REMEMBER BT-L1	CO	
10.	Define carry over factor.	REMEMBER BT-L1	CO	
	PART - B (5 x 13 = 65 Marks)	ВТ-ЦТ		
1.(a)	Analyze the pin jointed plane determinate truss shown in the figure by the method of joints. (13) And bo Am bo Thomas Good C Sm B	ANALYZE BT-L4	CO1	
	OR		8 ²¹ .	

11.(b)		ANALYZE	C01
	the figure. Use method of joints. (13)	BT-L4	001
4	P		
			,
1		100	
	A 60 60 60 60 60 60 CC		
A 2	A 3m John Am		3 , 3 ,
12.(a)	Using method of joints, analyze the forces in all the members	ANALYZE	CO1
	of the truss shown in the figure. (13)	BT-L4	COI
4	DXIOAN		
	12 And		. Ingrant to the
-			
9	\ \XE		
	A 60 760 36 B		2 -
	5m 2		
12 (b)	Using weather a few times and the second sec		
12.(b)	Using method of sections, analyze the forces in all the members of the truss shown in the figure. (13)	ANALYZE	CO1
	members of the truss shown in the figure. (13)	BT-L4	
_	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
-= ,-			
_ =			
	30 7		
	5m		
13.(a)	A continuous beam ABC is fixed at A and simply supported at	APPLY	CO2
	B and C. The span AB is 5m and carries a concentrated load of	BT-L3	
~_	80kN at its mid-span and the span BC is 8m and carries a		8
	uniformly distributed load of 12kN/m. Take the flexural rigidity for portion AB as EI and that for portion BC as 2EI.		
	Adapt slope deflection method and draw the bending	*	1.
	moment diagram. (13)		
	OR		
13.(b)	Using slope deflection method, solve the continuous beam of	APPLY	CO2
7	three spans, which is loaded as shown in figure. Draw SFD &	BT-L3	
	BMD. (13)		
A			
	20 4219	* 6 9	
	Aprime of the commo		- G (1)
	(工) 無 (工) 無 (工)		
	1 Am 6m Am 1		0,

14.(a)	Analyze the continuous beam shown in the figure by the slope deflection method and draw the shear force and bending moment diagram. Take the value of the EI as constant. (13)	ANALYZE BT-L4	CO2
	90 km		
	OR	10 c 1 h	,
14.(b)	Analyze the portal frame ABCD shown in figure by slope deflection method. Take EI = constant. (13)	ANALYZE BT-L4	CO2
-	rilin		
15.(a)	Using moment distribution method, solve the continuous beam, which is loaded as shown in figure. Draw SFD & BMD. (13) 60 km 20 km/m (1-5 L) (1-5 L)	APPLY BT- L3	CO3
	OR		
15.(b)	Using moment distribution method, determine the forces in all the members of the beam shown in the figure. El is constant throughout. (13)	APPLY BT- L3	CO3
·	A 2ml B 13m cmmy 8 km 7 km/m 1 km/m 1 km/m		

Blooms Taxonomy	Level-1 Remember	Level-2 Understand	Level-3 Apply	Level-4 Analyze	Level-5 Evaluate	Level-6 Create
<u>, 17 </u>	* * * * * * * * * * * * * * * * * * * *	Questi	on Number			Greate
Part-A	2,3,4,5,8,9,10	1,6,7	179			Tooling to the second
Part-B			13 (a,b) 15 (a,b)	11 (a,b) 12 (a,b) 14 (a,b)		
Part-C				16 (a,b)		
Total	14	06	26	54		
Distribution	2	0	- 8			

COURSE IN-CHARGE

DEPT. IQAC MEMBER

12/09/2023.

HOD/CIVIL

DEPARTMENT OF CIVIL ENGINEERING ACADEMIC YEAR 2023-2024 (ODD SEM) CE3502 – STRUCTURAL ANALYSIS I CAT 1 EXAMINATION – ANSWER KEY

CLASS/SEM : III / V

19.09.2023

PART - A

1. Outline determinate and indeterminate structures.

Determinate structure: A structure is considered statically determinate if all of its support reactions and member forces can be calculated using only the equations of static equilibrium. **Indeterminate structure:** A structure is termed as statically indeterminate, if it cannot be analyzed from principles of statics alone, i.e. $\Sigma H = 0$, $\Sigma V = 0$, $\Sigma M = 0$.

2. What is redundant frame and deficient frame?

If the number of members are more than (2j - 3), then the frame is known as redundant frame. (n > 2j-3)

Also, if the number of members are less than (2j - 3), then the frame is known as deficient frame. (n < 2j-3)

3. List the classification of frames.

Frames are classified as follows:

- Perfect frame
- Deficient frame
- Redundant frame
- Statically determinate frame
- Statically indeterminate frame

4. Define tension coefficient.

The force per unit length of a member is known as tension coefficient. It is given by, T = F/L where, T is tension coefficient, F is the force and L is length of the member.

5. State the assumptions made in the slope deflection method.

Following are the assumptions made in slope deflection method,

- All the joints of the frame are rigid, i.e, the angle between the members at the joints do not change, when the frame is loaded.
- Whenever the beams or frames are deflected, the rigid joints are considered to rotate as a whole, i.e, the angle between the tangents to the various branches of the elastic curve meeting at a joint, remain the same as those in the original structure.
- Distortions, due to axial and shear stresses, being very small, are neglected.

6. Write about the effect of support displacement in a structure.

The statically determinate structure changes their shape due to support settlement and this would in turn include reactions and stresses in the system. Since there is not external force system acting on the structures, these forces form a balanced force system by themselves and the structure would be in equilibrium.

7. How many slope deflection equations are available for two span continuous beam?

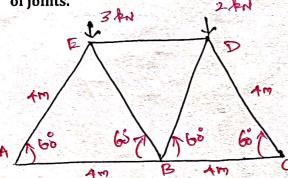
Two numbers of slope-deflection equations are available for each span, describing the moment at each end of the span and hence four slope deflection equations are available for two span continuous beam.

8. What is sway frame?

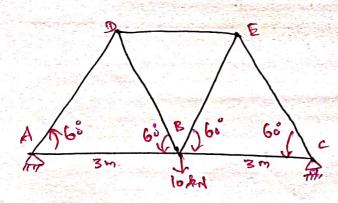
Sway is the lateral movement of joints in a portal frame due to the un-symmetry in geometry of the frame, un-symmetry in loading, moments of inertia, end conditions, settlement of one end of frame and horizontal loading on the column of the frame.

9. Write about distribution factor.

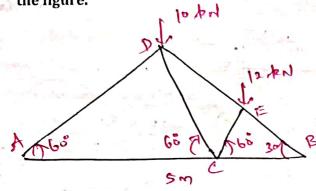
Distribution factor for the member at a joint is the ratio of the relative stiffness of a member to the total stiffness of all the members meeting at the joint.

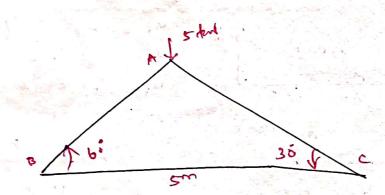

Distribution factor = $K / \Sigma K$

10. Define carry over factor.

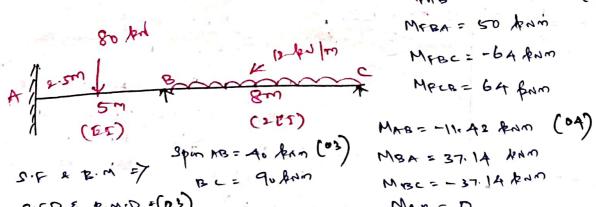

Carry over factor is defined as the ratio of the induced moment to the applied moment. It is the one in which half of the balanced moment is carried to far fixed end (ie.CO=0.5). The carry over factor is zero if the end is hinged/pin connected.

PART - B

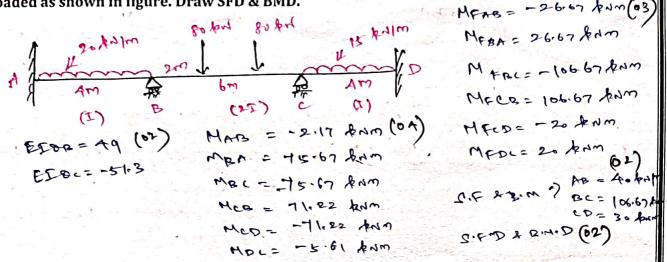

11. (a) Analyze the pin jointed plane determinate truss shown in the figure by the method of joints.


11.(b) Determine the forces in all the members of the truss given in the figure. Use method of joints.

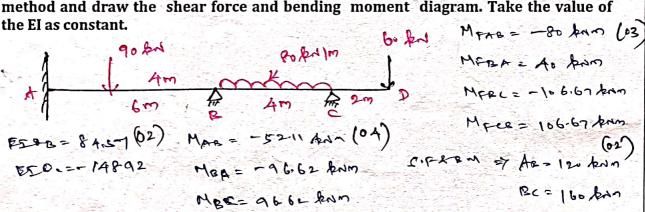
12.(a) Using method of joints, analyze the forces in all the members of the truss shown in the figure.



12.(b) Using method of sections, analyze the forces in all the members of the truss shown in the figure.

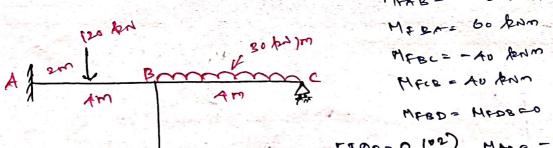

FAB=4,33 RA(0) FBC = 2.17 AN (T) FAC = 2.5 kN(1)

13.(a) A continuous beam ABC is fixed at A and simply supported at B and C. The span AB is 5m and carries a concentrated load of 80kN at its mid-span and the span BC is 8m and carries a uniformly distributed load of 12kN/m. Take the flexural rigidity for portion AB as EI and that for portion BC as 2EI. Adapt slope deflection method and draw the bending moment diagram. MFAB = - 50 km (03)



Mcz = D

13.(b) Using slope deflection method, solve the continuous beam of three spans, which is loaded as shown in figure. Draw SFD & BMD.


14.(a) Analyze the continuous beam shown in the figure by the slope deflection method and draw the shear force and bending moment diagram. Take the value of

MBE= 9662 knm MCB = 0

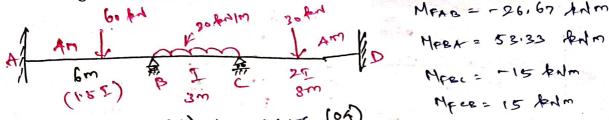
C.F.D & B.M.D (02)

14. (b) Analyze the portal frame ABCD shown in figure by slope deflection method. Take EI = constant.

MEAB= - bokum (08) MEBD = MEDBED

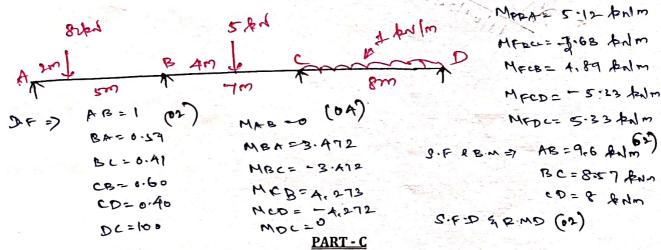
AM E100=0 (02) MASE - 60 ANM

E20c= -40 Mexe 60 kmm

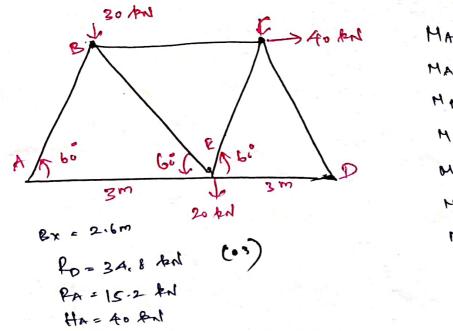

STR B.M. E) AB = 120 knn (02)
BC = 60 knn

Me = - 60 kmm

MRD=MOBCO


5.F.D & B.M.D (62)

15.(a) Using moment distribution method, solve the continuous beam, which is loaded as shown in figure. Draw SFD & BMD.



S.F.D & B.M.D (02)

15.(b) Using moment distribution method, determine the forces in all the members of the beam shown in the figure. EI is constant throughout.

16. (a). Analyze the determinate truss loaded as shown in the figure by the method of joints.

16.(b). Analyze the continuous beam shown in the figure by slope deflection method, if joint B sinks by 10mm. Given EI = $4000 \, kNm^2$. Draw SFD & BMD.

A (2EE) 8m B (EE)

0c = -8-6 x 10 1

MAR = -125.77 kmm)

MAR = -125.77 kmm)

MAR = 68.47 kmm

MAR = -68.5 kmm

MCB = 0

MFRE = - (06.67 km)

MFRE = - 20 km

MFRE = - 30 km

MFCE = 30 km

2.F & R. M & AB= 16. Em a Re= 60 Am

8t D & 5 5 m D (01)

STAFF INCHARGE

HOD/CIVIL.

CONTINUOUS ASSESSMENT TEST - 1/ II / MODEL EXAMINATION

College Code	8	2	1	1	Coll Na	lege me	1<10	2BC	co.	TLE	.O.E	04	ENGUN	EERING
Register Number	8	2	1	1	7	1	1	0	3	0	0	9	Semester	V
Roll No.	DICEO8 Yea				Year	/ Brar	nch /Se	ction	M	8 -	cui	ال	rs.	
Subject Code / Subject Name	CE3502-STRUCTURAL ANALYSIS-I													
Date / Session	16/	190	502	3/A	2		1	lo. of I	Pages	used	4	21		
Name of the Invigilator						Sig	nature	of the	3/18/6	ارمر ilator v	with date			
Instructions to the Candidate: Put Tick mark (✓) for th					r the q	uestion	s atten	ded in	the tic	k mark	colum	n against eac	h question	
PART – A			· K	P	ART -	B & C	i A	112	, 1° ari			1 1 30 -		

Instruction	ons to t	he Candida	te: Put T	ick mai	rk (/) fo	r the ques	tions at	tended in the	e tick mark c	column against each question
PAF	RT - A	1	11	, e 12.	i.		T – B 8			
Question No.	1	Marks	Quest	tion No.	(i)	(i) Marks	(ii) ✓	(ii) Marks	Total Marks	Grand Total
1	1		11	a		44.3				(In words)
2	1	2		b	1	08			08	
3	1	2	12	а						0.0
4		_		b	1	10	1		10	517
5			13	a		i.	10		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1800
6				b			15 3 m			
7	1	2	14	а	1	12			12	
8				b						
9	1	0	15	a	-	10			W	
10		0	37-	b						Grand Total
			16	а	1	13			13	1
			* 37	b	2 7 4			50 J		60
Tota	ıl	10		1.	Ε,	. Will	T.		53	
Signature of t	he stud	109123		Evaluat	tion	Name o	of the Ex	caminer	Signatur	e of the Examiner with date

Instructions to the candidates

- 1. You are prohibited from writing your NAME in any part of the answer book.
- 2. You are prohibited from writing or leaving any distinguishing marks so as to identify your answer book.
- 3. Use both side of the paper for answering questions (Except front page).
- 4. Check the regulation, Degree, Branch, Semester, Subject code and Subject Title of the Question Paper before answering the questions.
- 5. Possession of any incriminating material and Malpractice of any nature shall be punishable as rules.

reversion of the Original de la suite

×

DEPARTMENT OF CIVIL ENGINEERING ACADEMIC YEAR 2023-24 (ODD SEM) III YEAR CIVIL / V SEM - CAT I MARK STATEMENT CE3502/ STRUCTURAL ANALYSIS I

S.No.	Reg. Number	Student Name	CAT I (100 MARKS)
1	821121103001	ΑΚΛΙΥΑ J	40
2	821121103002	ANITHA B	20
3	821121103003	ARULPANDIYAN A	35
4	821121103004	ARUNKUMAR M	20
5	821121103006	MADHAN D S	25
6	821121103007	MANIKKARAJ R	(AB)
7	821121103008	MATHANKUMÁR S	AB
8	821121103009	MOHAN S	60
9	821121103010	NAAVINIYAA G V	50
10	821121103012	PASHAGAN G (VOC)	AB .
11	821121103013	PRAGADISH M	04
12	821121103014	PRASANNA R	(AB)
13	821121103015	SARAVANAN K	(AB)
14	821121103016	SURYA.V	45
15	821121103017	TAMILARASAN T	50
16	821121103018	VENKATACHALAM D	82
17	821121103019	VIJAY S	25
18	821121103301	MOHAMMED RIYAS J	34
19	821121103302	SINDHU G	55
20	821121103303	SURUTHI A	50
21	821121103701	SANJAIMANI M	(AB)

Total Strength - 21

Absent - 06

Passed - 05

Failed - 10

Pass % - 33.33').

Less than 10 - 01

STAFF INCHARGE

HOD/CIVIL 21/09/2023

DEPARTMENT OF CIVIL ENGINEERING ACADEMIC YEAR 2023-24 (ODD SEM) III YEAR CIVIL / V SEM - CAT I MARK STATEMENT CE3502/ STRUCTURAL ANALYSIS I

S.No.	Reg. Number	Student Name	CAT I (60 MARKS)	ASSIGNMENT (40 MARKS)	TOTAL (100 MARKS)
1	821121103001	AKALYA J	40	40	80
2	821121103002	ANITHA B	20	40	60
3	821121103003	ARULPANDIYAN A	35	40	75
4	821121103004	ARUNKUMAR M	30	40	70
5	821121103006	MADHAN D S	25	40	65
6	821121103007	MANIKKARAJ R	AB	38	38
7	821121103008	MATHANKUMAR S	AB	38	38
8	821121103009	MOHAN S	60	40	100
9	821121103010	NAAVINIYAA G V	50	40	90
10	821121103012	PASHAGAN G	AB	36	36
11	821121103013	PRAGADISH M	4	38	42
12	821121103014	PRASANNA R	AB	38	38
13	821121103015	SARAVANAN K	AB	38	38
14	821121103016	SURYA.V	45	40	85
15	821121103017	TAMILARASAN T	50	40	90
16	821121103018	VENKATACHALAM D	32	40	72
17	821121103019	VIJAY S	25	40 🛶 🧀	65
18	821121103301	MOHAMMED RIYAS J	34	40	74
19	821121103302	SINDHU G	55	40	95
20	821121103303	SURUTHI A	50	40	90
21	821121103701	SANJAIMANI M	AB	37	37

22/09/2023 HOD/CIVIL

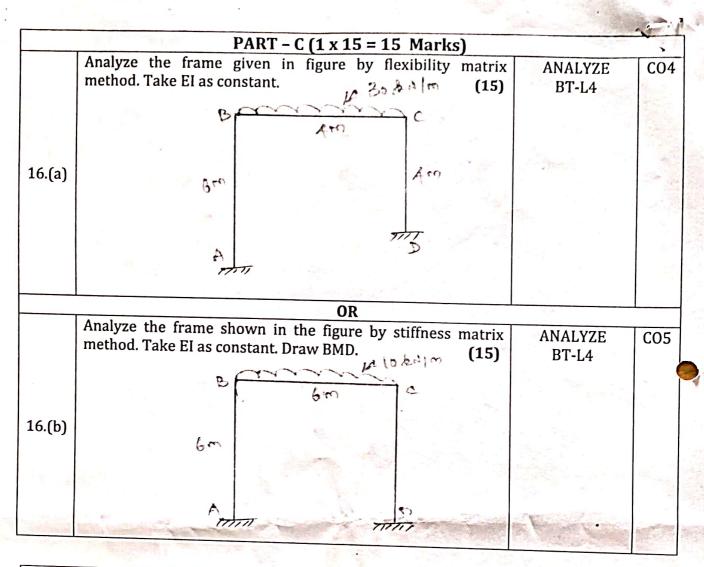
KINGS COLLEGE OF ENGINEERING

CONTINUOUS ASSESSMENT TEST II (OCTOBER 2023)

CE3502-STRUCTURAL ANALYSIS I

Class / Sem : III CIVIL / 05

Date / Session: 31.10.2023/AN

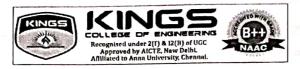

Maximum: 100 Marks

Time : 01.10 p.m. - 04.10 p.m.

	Answer ALL questions							
O No	PART - A (10 x 2= 20 Marks)							
Q. No	Question		TCC					
1.	Define moment distribution method.	REMEMBER BT-L1	co:					
2.	What is meant by side sway?	REMEMBER BT-L1	COS					
3.	Write about flexibility matrix method. UNDERSTAND BT- L2							
4.	What do you mean by joint translation?	REMEMBER BT-L1	CO4					
5.	What are flexibility coefficients?	REMEMBER BT-L1	CO4					
6.	Define force transformation matrix.	REMEMBER BT-L1	CO4					
7.	Write about static indeterminacy of a structure. UNDERSTAND BT-L2 C							
8.	Define stiffness coefficient. REMEMBER BT-L1							
9.	Write about stiffness matrix method. UNDERSTAND							
10.	Why the stiffness matrix method is also called as equilibrium REMEMBER method or displacement method?							
	$PART - B (5 \times 13 = 65 \text{ Marks})$	2. 2.						
11.(a)	Using moment distribution method, solve the frame, which is loaded as shown in figure. Draw SFD & BMD. (13)	APPLY BT-L3	CO3					
	OR							

	14	L. Miller Co. Land Co	(Black and St.
11.(b)	Using moment distribution method, solve the continuous beam, which is loaded as shown in figure. Draw SFD & BMD.	APPLY BT-L3	CO3
, N	backet (13)	day of	September
	1 200 800 100	e Alia	
	(21) B (T)	W 75 E 5	100
	800 800 400 8		
	(27)	A	
	(2I) B (I)	164	
		st.	"
12.(a)	Analyze the continuous beam ABC shown in the following	ANALYZE	CO4
	figure by the flexible matrix method and draw the shear force	BT-L4	
	diagram and bending moment diagram. (13)	_*	
	12.64	m. W.	
	12 4 1	to the second se	
=	24 th 12 th c 10 m for 60 m	Live Training Control	
	A com for for fin		
	7777	1	_
	1	•	-
_		* - *	
		-	
	OR		
12.(b)	Using flexible matrix method, analyze the continuous beam	ANALYZE	C04
F. Comments	shown in the figure. Draw SFD & BMD. (13)	BT-L4	Will start
-	60 Ari	47.00.0024	U.S. and man
	200 1		
	A 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		-
	7111		
		ta a	
		-	
	" partic		
13.(a)	A two span continuous beam ABC is fixed at A and	ANALYZE	CO4
	hinged at supports B and C. Span of AB = span of BC = 6 m.	BT-L4	
	Analyze using flexibility influence co-efficient matrix assuming verticalreaction at B & C as redundant. (13)		,
	OR		
13.(b)	Analyze the continuous beam ABC shown in the following	ANALYZE	C04
231(3)	figure by the flexible matrix method and draw the shear force	BT-L4	
	diagram and bending moment diagram. (13)		
, ,		·7	
1 4.	10,6% 00,6%	1	
² mj	K	n	
A 1			
	James & Truck		
	Bu Su Su		

approach. (13) BT-L4 15.(a) Interpret the moments for the beam shown in figure by stiffness method. EI is constant for all members. (13) BT-L4 APPLY STIFFNESS METHOD. EI is constant for all members. (13) BT-L4 OR	14.(a)	Analyze the continuous beam shown in the figure by the stiffness method and draw the shear force and bending moment diagram. Take the value of the El as constant. (13)	ANALYZE BT-L4	C05
14.(b) Analyze the beam shown in figure using direct stiffness approach. 15.(a) Interpret the moments for the beam shown in figure by stiffness method. El is constant for all members. 15.(b) Using stiffness method, determine the forces in all the members of the beam shown in the figure. Draw SFD & BMD. 15.(c) Analyze the beam shown in figure using direct stiffness approach. APPLY CO		10 hum 10 bh 26 hh 10 hum 10 bh 26 hh 10 hum 10 hm 10 hum 10 bh 10 hum 10 hm 10 h		
15.(a) Interpret the moments for the beam shown in figure by stiffness method. El is constant for all members. OR 15.(b) Using stiffness method, determine the forces in all the members of the beam shown in the figure. Draw SFD & BMD. (13) APPLY OR 15.(c) OR 15.(d) OR 15.(e) OR 15.(e) OR 15.(e) OR 15.(e) OR 15.(e) OR APPLY BT-L3 CO CO CO CO CO CO CO CO CO C				
approach. (13) BT-L4 15.(a) Interpret the moments for the beam shown in figure by stiffness method. El is constant for all members. (13) BT-L3 CC Stiffness method. El is constant for all members. (13) BT-L3 CC The stiffness method determine the forces in all the members of the beam shown in the figure. Draw SFD & BMD. (13) BT-L4 CC APPLY BT-L3 CC The stiffness method determine the forces in all the members of the beam shown in the figure. Draw SFD & BMD. (13) BT-L4			,	
Interpret the moments for the beam shown in figure by stiffness method. EI is constant for all members. (13) OR 15.(b) Using stiffness method, determine the forces in all the members of the beam shown in the figure. Draw SFD & BMD. (13)	14.(b)	approach. (13)		COS
Stiffness method. El is constant for all members. OR 15.(b) Using stiffness method, determine the forces in all the members of the beam shown in the figure. Draw SFD & BMD. (13) APPLY BT-L3 (13) BT-L3 CO STAN APPLY BT-L3 (13)		A 2m A 8m		
stiffness method. El is constant for all members. OR 15.(b) Using stiffness method, determine the forces in all the members of the beam shown in the figure. Draw SFD & BMD. (13) APPLY BT-L3 (13) BT-L3 CO STAN APPLY BT-L3 (13)	+ applyant			
OR 15.(b) Using stiffness method, determine the forces in all the members of the beam shown in the figure. Draw SFD & BMD. (13) 10.7% 2.7% 2.7% 3.7%	15.(a)	stiffness method. El is constant for all members. (13)	THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.	CO5
15.(b) Using stiffness method, determine the forces in all the members of the beam shown in the figure. Draw SFD & BMD. (13) (13)				
15.(b) Using stiffness method, determine the forces in all the members of the beam shown in the figure. Draw SFD & BMD. (13) 10.77 20.75 10.77 20.75 2				
members of the beam shown in the figure. Draw SFD & BMD. (13) 10 AN 20 DIM	15 (b)		ADDIX	1005
201 800	15.(0)	members of the beam shown in the figure. Draw SFD & BMD.		C05
N A TOTAL CONTRACTOR OF THE PARTY OF THE PAR		10 Ani 20 piston		
		V.		


Blooms Taxonomy	Level-1 Remember	Level-2 Understand	Level-3 Apply	Level-4 Analyze	Level-5 Evaluate	Level-6
		Ouestic	n Number	111111111111111111111111111111111111111	Evaluate	Create
Part-A	1,2,4,5,6,8,10	3,7,9	•			
Part-B			11 (a,b) 15 (a,b)	12 (a,b) 13 (a,b)	26 - 26, 24	
Part-C		2.5		14 (a,b) 16 (a,b)	ĵ.	
Total Distribution	14	06	26	54		2.2
DISTIBUTION	2	0	8	0	savered of a	

24

COURSE IN-CHARGE

DEPT. IQAC MEMBER

HOD/CIVIL

DEPARTMENT OF CIVIL ENGINEERING ACADEMIC YEAR 2023-2024 (ODD SEM) CE3502 – STRUCTURAL ANALYSIS I CAT II EXAMINATION – ANSWER KEY

CLASS/SEM : III / V

31.10.2023

PART - A

1. Define moment distribution method.

Moment distribution method is widely used for the analysis of indeterminate structures. In this method, all the members of the structure are assumed to be fixed in position and fixed end moments due to external loads are obtained. It is also known as Hardy cross method.

2. What is meant by side sway?

The lateral movement of the frames is known as side sway. If the loading system (or) the geometry of the system is not symmetric, the frame will have side sway. Side sway may be prevented in a frame by providing shear or partition walls and fixing the top of frame with adjoining rigid structures.

3. Write about flexibility matrix method.

In flexibility matrix method, the forces in the structure are treated as unknowns. The no of equations involved is equal to the degree of static indeterminacy of the structure. This method is also called as force method.

4. What do you mean by joint translation?

In a structure, yielding may occur at the end due to the action of external loads over the structure. This yielding at the end support will cause an unequal amount of displacement. This type of relative settlement phenomenon between the fixed supports is known as joint translation.

5. What are flexibility coefficients?

A Flexibility coefficient aij is defined as the displacement at joint 'i' due to a unit load at joint 'j' while all other joints are unloaded. The constant 'a' is known as flexibility of the structure and it has a unit of displacement per unit force.

6. Define force transformation matrix.

The force transformation matrix is defined as the connectivity matrix which relates the internal forces Q and the external forces R. Writing it in a matrix form,

 $\{Q\} = [b]\{R\}$

Where, Q = member force matrix/vector

b = force transformation matrix

R = external force/load matrix/ vector

7. Write about static indeterminacy of a structure.

The excess number of reactions that make a structure indeterminate is called static indeterminacy.

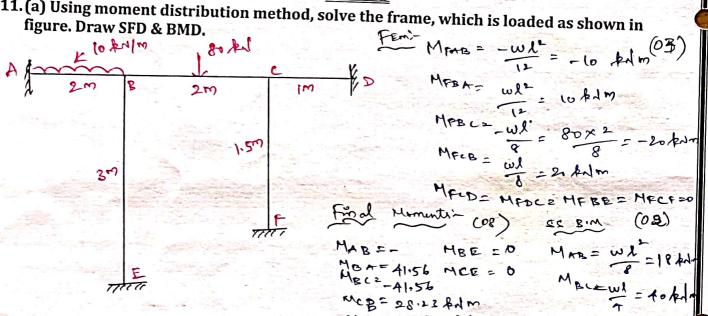
Static indeterminacy = No. of reactions - Equilibrium conditions

1

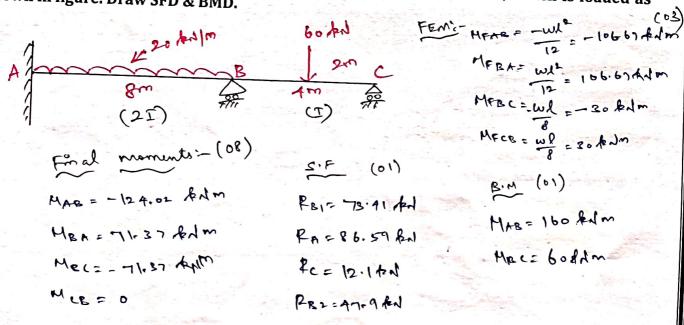
8. Define stiffness coefficient.

A Stiffness coefficient kij is defined as the force developed at joint i due to a unit displacement at joint 'j' while all other joints are fixed. The constant 'k' is known as stiffness of the structure and it has a unit of force per unit displacement.

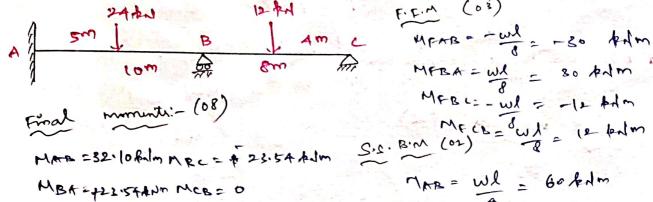
9. Write about stiffness matrix method.


Stiffness matrix method is also called the displacement method in which the displacements that occur in the structure are treated as unknowns. The number of displacements involved is equal to the number of degrees of freedom of the structure.

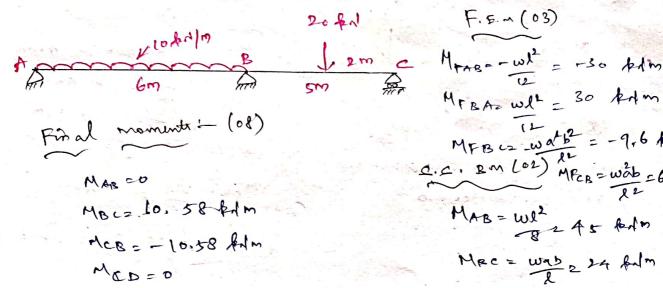
10. Why the stiffness matrix method is also called as equilibrium method or displacement method?

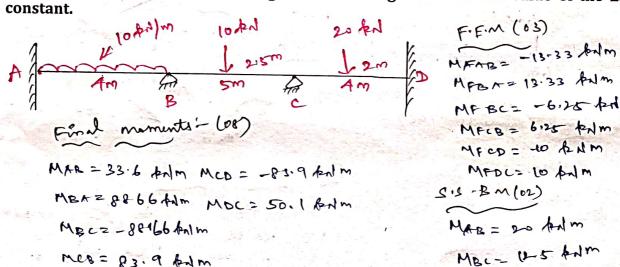

Stiffness method is based on the superposition of displacements and hence is also known as the displacement method and since it leads to the equilibrium equations, the method is also known as equilibrium method.

PART - B


11.(a) Using moment distribution method, solve the frame, which is loaded as shown in figure. Draw SFD & BMD.

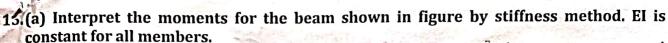
MED= -28.23 fr/m 11.(b) Using moment distribution method, solve the continuous beam, which is loaded as shown in figure. Draw SFD & BMD.

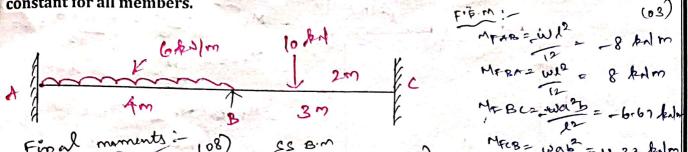

12.(a) Analyze the continuous beam ABC shown in the following figure by the flexible matrix method and draw the shear force diagram and bending moment diagram.


12.(b) Using flexible matrix method, analyze the continuous beam shown in the figure. Draw SFD & BMD.

13.(a) A two span continuous beam ABC is fixed at A and hinged at supports B and C. Span of AB = span of BC = 6 m. Analyze using flexibility influence co-efficient matrix assuming verticalreaction at B & C as redundant.

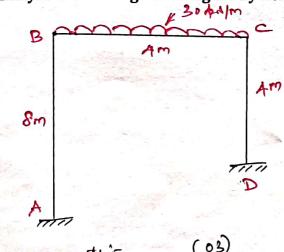
13.(b) Analyze the continuous beam ABC shown in the following figure by the flexible matrix method and draw the shear force diagram and bending moment diagram.

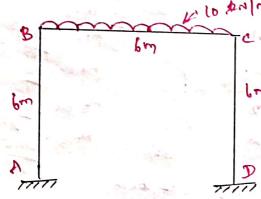

14.(a) Analyze the continuous beam shown in the figure by the stiffness method and draw the shear force and bending moment diagram. Take the value of the EI as constant.



Analyze the beam shown in figure using direct stiffness approach.

MAB = -23.73 PAM MRA = 77.75 Balm MR1 = - 77:75 knm MCB = 111.21 And M


A 2n
$$\int \frac{100 \, \text{km}}{3} \, \frac{1}{4} \, \frac{1}{4}$$



15.(b) Using stiffness method, determine the forces in all the members of the beam shown in the figure. Draw SFD & BMD.

16. (a). Analyze the frame given in figure by flexibility matrix method. Take EI as constant.

16.(b). Analyze the frame shown in the figure by stiffness matrix method. Take El acconstant. Draw BMD.

Ce momental (03)

$$MBC = \frac{WL^2}{8} = \frac{10 \times 6^2}{8} = 45 \text{ kalm}$$

$$C: F.D. & B.M.D$$

STAFF INCHARGE

MFBC= $-\frac{\omega l^2}{12} = -\frac{10 \times 6}{12} = -\frac{30 \text{ Adm}}{12}$ MFCB = $\frac{\omega l^2}{12} = \frac{30 \text{ Adm}}{12}$ MFARS MFRA = MFCD= MFDC=0

Final Moments: (08)

MAB= 5.89 Adm MBA= 12.56 Adm

MBC: -12.50 kum

McB= 12.56 AAM

McD=-12.56 Adm

MDL: 5.89 Adm

3-5-01/11/23 HOD/CIVIL

CONTINUOUS ASSESSMENT TEST - 1 / IÍ / MODEL EXAMINATION

College Code	8	2		1	College Name	Kings callege of Engineering	
Register Number	8	2	l	1	2 1	1 0 3 0 0 1 Semester 05	
Roll No.	210	21CEOI Year / Branch / Section 17, 1 Civil Engineering					
	CE3502 Structural Analysis - I 31.10.2023 AN No. of Pages used						
Date / Session	Date / Session 31.10.8083 AN No. of Pages used						
Dr. T. Pachyath Name of the Invigilator						Signature of the Invigilator with date	

Instruction	ons to t	he Candida	te: Put T	ick mai	rk (🗸) fo	r the ques	tions at	tended in th	e tick mark co	lumn against each questio		
	RT – A		-				T – B &					
Question No.	1	Marks	Question No.		(i) ✓	(i) Marks	(ii) ✓	(ii) Marks	Total Marks	Grand Total		
1		0	11	а	12				12	(In words)		
2		0		b	15-123							
3		0	12	а	88				08			
4		O	12	b						THREE		
5		(O	13	а								
6	de la	2	13	b	08		1		80			
7		P	14	а								
8	See 1	Ø		b	7	-						
9		2	15	а			ing the Si					
10	8.3		-	b	03				03	Grand Total		
2 4 2 − 3		16	а	24	Mary .		\$ 20°E					
			b	_	· · · · · · · · · · · · · · · · · · ·	3 200			25			
Tota		OA	7-4-4	and Jiki				e ul	31	3		
ignature of t		y 6 0 dent with da			tion	Name (DP.	ra VC	Signature	of the Examiner with date		

Instructions to the candidates

- 1. You are prohibited from writing your NAME in any part of the answer book.
- 2. You are prohibited from writing or leaving any distinguishing marks so as to identify your answer book.
- 3. Use both side of the paper for answering questions (Except front page).
- 4. Check the regulation, Degree, Branch, Semester, Subject code and Subject Title of the Question Paper before answering the questions.

5. Possession of any incriminating material and Malpractice of any nature shall be punishable as rules

* Practice more hauss

DEPARTMENT OF CIVIL ENGINEERING ACADEMIC YEAR 2023-24 (ODD SEM) III YEAR CIVIL / V SEM - CAT II MARK STATEMENT CE3502/ STRUCTURAL ANALYSIS I

_			
S.No.	Reg. Number	Student Name	CAT II (100 MARKS)
1	821121103001	AKALYA J	35
2	821121103002	ANITHA B	32
3	821121103003	ARULPANDIYAN A	50
4	821121103004	ARUNKUMAR M	27
5	821121103006	MADHAN D S	24
6	821121103007	MANIKKARAJ R	16
7	821121103008	MATHANKUMAR S	8
8	821121103009	MOHAN S	43
9	821121103010	NAAVINIYAA G V	50
10	821121103012	PASHAGAN G	02
11	821121103013	PRAGADISH M	17
12	821121103014	PRASANNA R	-9-
13	821121103015	SARAVANAN K	F0~
14	821121103016	SURYA.V	25
15	821121103017	TAMILARASAN T	52
16	821121103018	VENKATACHALAM D	30
17	821121103019	VIJAY S	26
18	821121103301	MOHAMMED RIYAS J	33
19	821121103302	SINDHU G	60
20	821121103303	SURUTHI A	29
21	821121103701	SANJAIMANI M	-0-

Total Strength - 21

Absent - NIL

Passed - 0

Failed - (#

Pass % - 19.05 /.

Less than 10 - 05

STAFF INCHARGE

Balanam HOD/CIVIL 03/11/2023

DEPARTMENT OF CIVIL ENGINEERING ACADEMIC YEAR 2023-24 (ODD SEM) III YEAR CIVIL / V SEM - CAT II MARK STATEMENT CE3502/ STRUCTURAL ANALYSIS I

S.No.	Reg. Number	Student Name	CAT II (60 MARKS)	ASSIGNMENT (40 MARKS)	TOTAL (100 MARKS)
1	821121103001	AKALYA J	21	40	61
2	821121103002	ANITHA B	23	40	63
3	821121103003	ARULPANDIYAN A	30	40	70
4	821121103004	ARUNKUMAR M	16	40	56
5	821121103006	MADHAN D S	14	38	52
6	821121103007	MANIKKARAJ R	10	36	36
-	821121103008	MATHANKUMAR S	5	39	39
8	821121103009	MOHAN S	26	40	66
9	821121103010	NAAVINIYAA G V	30	40	70
10	821121103012	PASHAGAN G	1	36	36
11	821121103013	PRAGADISH M	10	37	47
12	821121103014	PRASANNA R	0	38	38
13	821121103015	SARAVANAN K	0	38	38
14	821121103016	SURYA.V	15	40	55
15	821121103017	TAMILARASAN T	31	40	71
16	821121103018	VENKATACHALAM D	18	40	58
17	821121103019	VIJAY S	16	40	56
18	821121103301	MOHAMMED RIYAS J	20	40	60
10	821121103302	SINDHU G	36	40	76
20	821121103303	SURUTHI A	17	40	57
21	821121103701	SANJAIMANI M	0	36	36

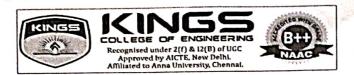
STAFF INCHARGE

HOD/CIVIL 12023

REMEDIAL

CLASS

TESTS



DEPARTMENT OF CIVIL ENGINEERING ACADEMIC YEAR 2023-24 (ODD SEM) III YEAR CIVIL / V SEM - CLASS TEST MARK STATEMENT CE3502/ STRUCTURAL ANALYSIS I

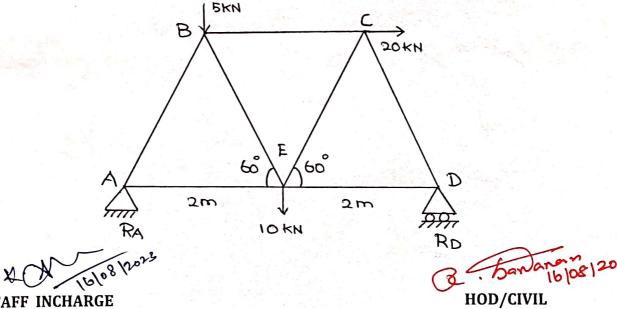
S.No.	Reg. Number	Student Name	16 08 23	17 08/23						
			15	RETEST	15		1			
1	821121103001	AKALYA J	AB	13	11					_
2	821121103002	ANITHA B	10		10	-	1.3	,		
3	821121103003	ARULPANDIYAN A	12		D		- 1			
4	821121103004	ARUNKUMAR M	lo		12	r.				
0	821121103006	MADHAN D S	-0-	07	113			1 - 102		
6	821121103007	manikkaraj r	-0-	07	09	1 1 1 1 2 2 2 3 3				
7	821121103008	MATHANKUMAR S	-0-	11	10		A The St.			
8	821121103009	MOHAN S	12	-	12	9.55	3 3			
9	821121103010	NAAVINIYAA G V	10		11	- V		1 110	_ 1	
10	821121103012	PASHAGAN G (VOC)	-0-	07	08		10.7		7 3 3 3 3 3	
11	821121103013	PRAGADISH M	-0-	05	10	144				E.
12	821121103014	PRASANNA R	-0-	08	09					
13	821121103015	SARAVANAN K	02	AB	07		8, 49			
14	821121103016	SURYA.V	08	12	12		12 12 12 12 12 12 12 12 12 12 12 12 12 1			: •
15	821121103017	TAMILARASAN T	14		13		-	18 P		
io	821121103018	VENKATACHALAM D	03	12	12			,,	~	₫.
17	821121103019	VIJAY S	AB	08	12					
18	821121103301	MOHAMMED RIYAS J	U		12			7,		
19	821121103302	SINDHU G	10		12		× 1			
20	821121103303	SURUTHI A	14		11		Sept.			
21	821121103701	SANJAIMANI M	01	06	AB	4		,		
	No of Students Present			11	20	1		-		-
	No of Students Absent			01	01					12
7.	Staff Si	gnature	40 Lb 8	11300 1710	VENTOR	>				
	HOD Si	gnature	Baller		15 Chains	- 195 - 1				

STAFF INCHARGE

HOD/CIVIL 12013

DEPARTMENT OF CIVIL ENGINEERING ACADEMIC YEAR 2023-2024 (ODD SEM) CE3502 - STRUCTURAL ANALYSIS I **CLASS TEST-1**

Class: III /CIVIL Max. Marks: 15


Date & Session: 16.08.2023

Time: 45mins

Answer all the questions

1. What about the imperfect frame and its types. (2 m)

2. Analyze the frame shown in the figure using method of joints. (13 m)

STAFF INCHARGE

a coder

Name: 61.v. Naaviniyaa

внапсh: III-yr civil Engg

Sub-code / subject: CE 3502 - Structural Analysis -I

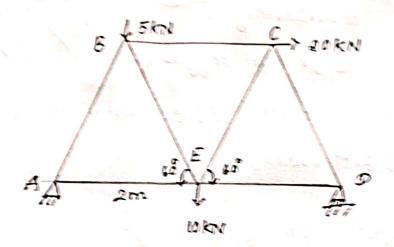
Date: 16.08.2023

1. Impersect Frame:

when an, external load is applied in a frame and if the members are not sufficient to keep the frame in equilibrium then the frame is known as imperfect frame. That is given by $n \neq 2j-3$

Types of frames:

i) Reduntant frame,

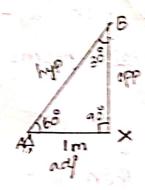

If 'n' is greater than 2j-3 then the frame is known as neduntant trame.

98) Deficient frame

"Quality !

If 'n' is less than 2j-3 then the frame is known as deficient frame.

2



To find:

$$F_{AB} = ?$$
 $F_{CE} = ?$ $F_{AE} = ?$
 $F_{BC} = ?$ $F_{DC} = ?$
 $F_{BE} = ?$ $F_{DE} = ?$

solution:

consider triangle ABX,

$$Tan 60° = \frac{BX}{AX}$$

$$BX = AX \tan 60^{\circ}$$

$$= 1 \tan 60^{\circ}$$

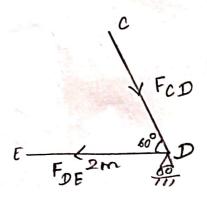
$$BX = 1.73 \text{ kN}$$

$$R_D \times 4 - 10 \times 2 - 5 \times 1 - 20 \times 1.73 = 0$$

$$R_D = \frac{59.6}{4}$$

Sum of upward forces = sum of downward forces

$$RA + RD = 10 + 5$$


Joint: A

$$R_A - F_{AB} \sin 60^\circ = 0$$

Resolving forces horizontally,

$$FAE = \frac{FAB \cos 60^{\circ}}{\cos 60^{\circ}}$$

Joint : D

Resolving forces vertically,

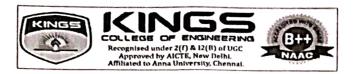
$$R_{\mathcal{D}} - F_{c\mathcal{D}} \, s \ln \, b \, \mathring{o} \, = 0$$

$$R_{\mathcal{D}} = F_{c\mathcal{D}} \, s \ln \, b \, \mathring{o}$$

Resolving forces horizontally,

Joint : B

Resolving forces. Horizontally,


$$-FBC = \frac{53 \cdot 9}{\cos 60^{\circ}}$$

Joint : C

Resolving forces Vertically,

Result:

Membors	Forces	Nature of forces
AB	11.43 KN	С
ВС	104.8KN	T
BE	13.19 KN	T
CE	14.89 KN	T
DC .	17.2 KN	C
DE	r 2 KN	C
AE	11.43 KN	С

DEPARTMENT OF CIVIL ENGINEERING ACADEMIC YEAR 2023-2024 (ODD SEM) CE3502 – STRUCTURAL ANALYSIS I CLASS TEST-2

Class: III /CIVIL

Date & Session: 04.09.2023

Max. Marks: 15

Time: 45mins

Answer all the questions

1. Write down the steps involved in slope deflection method. (2 m)

2. Analyze the beam shown in the figure using slope deflection method. (13 m)

STAFF INCHARGE

HOD/CIVIL

Weekly Test -2.

Name: Gosindhu

Rollno: 19

Sub : SAI

Sub code: CE3502

Date 14.09.03.

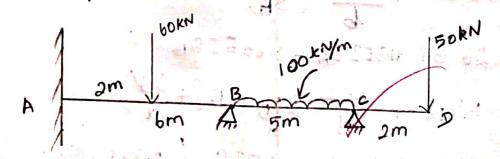
Steps involved in Slope Deflection method:

* To Calculate FEM for giving Load.

* For each member in the write down the slope equation.

* For each member curite clown the joint

egrefilibium egretation.


* For equilibrium equation to get unknown

displacement.

* Calculate the final moment.

* clean the Bonding Moment.

2. Slope deflection notherd.

Step 1:

& Span AB

$$M_{FAB} = -\frac{wab^2}{L^2} = \frac{-60(2)(4)^2}{6^2} = -53.33 \text{ LNm}$$

$$M_{FBA} = \frac{\omega a^2 b}{L^2} = \frac{60(2)^2 (4)}{6^2} = 26.67$$
 KNM

*Span BC.

$$M_{FBC} = \frac{-\omega L^2}{12} = \frac{-100(5)^2}{12} = -208.33 \text{ kmm}$$

MFCB =
$$\frac{\omega \ell^2}{12} = \frac{100(5)^2}{12} = 208.33 \text{ kN m}$$

Spanod

MECD =

STEP -2:

Stope deflection equecation:

$$M_{AB} = M_{FAB} + \frac{2EI}{J} (20A + 0B + 3A)$$

$$= -53.33 + \frac{2EI}{b} (0B)$$

$$= -53.33 + 0.33EIOB.$$

$$M_{BC} = M_{FBC} + \frac{8EI}{L} (20B + 0c + \frac{34}{L}).$$

$$= -208 \cdot 33 + 0.66EIO_B + 0.33EIO_C.$$

$$M_{CB} = M_{FICB} + \frac{2EI}{L} \left(20B + 20C + \frac{3N}{L} \right)$$

$$= 208.33 + \frac{2EI}{6} 0B + \frac{4FOC}{6}$$

$$= 208.33 + 0.33 EIOB + 0.66 EIOB.$$

STEP-3

Joint egpeilibrium condition:

MBA 4 MBC = 0

(26.67 +0.33EIOAD) + (-208.33 +.0.66EIOB+ 0.33EIOc)=0

- 181.66 + 0.33EID+ 1.32 EIOB+ 0.33EIOC=0

() 0.33 EIO p 11.32 EIOB + 0.33 EIOC= 181.66

Joint C:

M.CB +MCD

208.33+0.33EIOB+0.66EIOBJ+ [=0.

0.33EIOB + 0.66EIOB = 0.

ETOB = 208.83

ETOR = 1.176

EIOc = 2.36.

STEP-4:

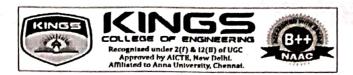
Calculate Homent using SD expecation.

MAB = -53.33+0.33ETOB.

= -53.33 +0.33 x (1.146)

2 -52.95.

MBA = 26.67 to 33 ETOP + 0.66 TOB. = 2.667 # 0.33 # 0.66 x 2.36 =4.736. MBC = -208.33 +0.66 ETOG +0.33EIQ = -208.33+0.66×8.56+0.33×2.36. = 213.02. McB = 208.33+0-33×1.146.×0.66. -3.473 87ep :5. Calculate SSM: $M_{AB} = -\frac{\omega ab^2}{L^2} = \frac{60 \times 8 \times (4)^2}{b^2} = 53.33.$ $MBc = \frac{\omega l^2}{12} = \frac{100 \times 5^2}{100 \times 5^2} = 208.33$ Step:6 2 ram Im m 152 95 1 4.736 213.02 3.493


REVISION

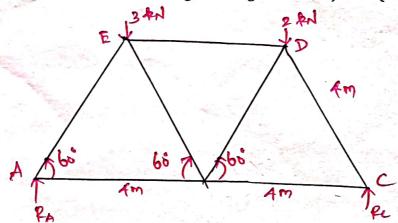
TESTS

DEPARTMENT OF CIVIL ENGINEERING ACADEMIC YEAR 2023-24 (ODD SEM) III YEAR CIVIL / V SEM - REVISION TEST MARK STATEMENT . CE3502/STRUCTURAL ANALYSIS I

S.No.	Reg. Number	Student Name	16/10/23	20/10/23	25/10/23	15/1/23		
	0		20	40	40	10	- 4	
1	821121103001	AKALYA J	19	27	AB	38		
2	821121103002	ANITHA B	19	24	26	26		
3	821121103003	ARULPANDIYAN A	18	33	27	36		
4	821121103004	ARUNKUMAR M	17	34	AB	33	Jan .	
5	821121103006	MADHAN D S	AB	AB	AB	23	3.	i de la compania del compania del compania de la compania del compania de la compania del compania de la compania de la compania de la compania de la compania del compania
6	821121103007	MANIKKARAJ R	AB	AB	AB	20		
7	821121103008	MATHANKUMAR S	17	12	15	20		
8	821121103009	MOHAN S	AB	38	35	AB '		
9	821121103010	NAAVINIYAA G V	20	28	34	39		*
10	821121103012	PASHAGAN G	16	18	17	19		
11	821121103013	PRAGADISH M	17	18	AB	18		4
12	821121103014	PRASANNA R	AB	AB	AB	17		
13	821121103015	SARAVANAN K	AB	AB	AB	20		
14	821121103016	SURYA.V	AB	AB	22 .	AB		
15	821121103017	TAMILARASAN T	AB.	38	27	32		4
3 .6	821121103018	VENKATACHALAM D	AB	19	20	AB		ar vine
17	821121103019	VIJAY S	AB	CO	30	27		
18	821121103301	MOHAMMED RIYAS J	18	AB	22	34		
19	821121103302	SINDHU G	19	33	38	38	**	
20	821121103303	SURUTHI A	19	26	30	38		No ball-
21	821121103701	SANJAIMANI M	16	-18	12	14.3		
No of Students Present			12	15	14	18		
No of Students Absent			09	06	07	0.3	A STATE OF THE STA	P. Name
Staff Signature			KON	Ked 20/14/22	40/ July	Blil2)		
HOD Signature			2 15 1012	3 harror	AN AN AN	- bayanes		
Principal Signature			SAIBM	. give.	,	din!"	A3.	

DEPARTMENT OF CIVIL ENGINEERING ACADEMIC YEAR 2023-2024 (ODD SEM) CE3502 - STRUCTURAL ANALYSIS I **REVISION TEST-1**

Class: III /CIVIL Date & Session: 16.10.2023


Max. Marks: 20 Time: 45mins

Answer all the questions

1. What short notes on imperfect frame. (2 m)

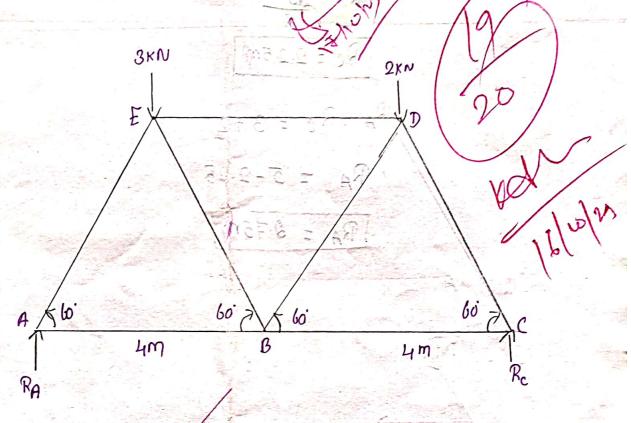
2. Write short notes on rigid joints. (2m)

3. Analyze the frame shown in the figure using method of joints. (16 m)

STAFF INCHARGE

HOD/CIVIL

Revision Test -1


Name: 3 Akolya

sept: 11) - year civil

Roll No : 21CEOI

Sub/code: SA-I/CE3502

Analyse the frame shown in the figure using methods of Irons.

F0B = ?

TO Find:

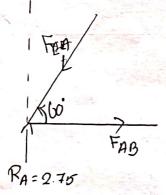
\$ BE = ?

FBC = ? FEA = ?

FCD = ? FEB = ? WINC EN

soln.

Calculate reaction force RA 2 RE Taking moment about A.


Mone : I also

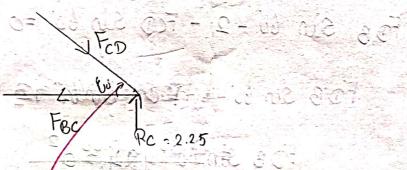
$$8Rc = \frac{18}{8}$$
 $Rc = \frac{18}{8}$
 $Rc = 2.25$

medo el Tablia

$$R_A = 5 - 2.25$$
 $R_A = 2.75 \text{ m}$

Joint A:

Resolving forces Vertically


Resolving forces harizontally.

FAB - FEA COS 60 = 0

FAB = 3.17 COS60

FAB = 1.59 KN (7)

Joint C:

Resolving forces vertically

Rc - FcD sin 60:0

$$FCD = Rc = \frac{2.25}{\text{Sin bo}}$$

FCD = 2.59 KN(C)

Resolving forces Honizontally

FBC- FED COS Go'=0

FB c = 2.59 cos 60'

FBC = 1.29 KN (T)

I finial FED force vertically Resolving FDB Sin 60 - 2 - FCD Sin 60 =0 FOB Sin 60-2 FED-SUMBO 72 FDB 502:59 Sip 60-2 FDB = 0.24 Scin 60: FDB = 0.28 KN (c) Rescalving forces Harizontally -FED2-FDB COSGO + FCD COSGO = 0-1- FED-10-28, COS 600 + 259 COS 600 =0 - FED = 1028 cas 60, -259 cas60" FED = 0.14-1.295

FED = - 1.155 (c)

Joint Form
FED

WEST

FEA

WEST

FEB

Resolving forces Vertically

FEA Sin 60 - 3 - FEB Sin 60 = 0

Fin sin lo FEB = FEN sin 60 +3
Sin 60

FEB: = 3.17 Sun 60:43
Sun 60:

FEA = 5.74 Sin 60'

FREA = 6.63×N(c)

in manu - s

a Caudina a

15

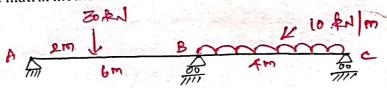
DEPARTMENT OF CIVIL ENGINEERING ACADEMIC YEAR 2023-2024 (ODD SEM)

CE3502 - STRUCTURAL ANALYSIS I

REVISION 1 FO 7 2

Class: III /CIVIL Max. Marks: 40 Date & Session: 20.10.2023 (FN)

Time: 90mins


Answer all the questions

 $PART - A (5 \times 2 = 10 Marks)$

- 1. Write about flexibility matrix method.
- 2. Define force transformation matrix.
- 3. What are flexibility coefficients?
- 4. Write about stiffness matrix method,
- 5. Write about static indeterminacy of a structure.

PART - B (2 x 15 = 30 Marks)

6. Analyze the continuous beam ABC as shown in the following figure by the flexible matrix method and draw the bending moment diagram.

7. Analyze the continuous beam shown in the figure by direct flexibility approach.

Take El constant throughout.

A 3m 1 6m 20 km/m

STAFF INCHARGE

HOD/CIVIL

Sal. DALE: - 80/10/3083 Bevision - I

MAME: Tramilarasan CLASS:- 3rd year civil SUB + SA-1

SUBLUDE : CE3501/

1. Fleability matrix method, Draw BPD & BMD.

A Am & Barrange C 6m 6m fm 4m for

calculate Staticaly Entederminary,

D8= R-Y

DS=4-3

1=2d

The structure is statical determinancy in the 1st more town it wood who is in degree &B.

gtop 2: Calculate FFM:

 $MFAB = \frac{-wab^2}{L^2} = \frac{-30x \, 2x + ^2}{b^2} = -2b.67 \, \text{fmm}$

 $MFBA = \frac{\omega a^2 b}{L^2} = \frac{30 \times 2^2 \times 4}{1} = 13.33$ from

MFBC = $-\omega L^2 = -10^{1/2} = -13.33$ from

 $MFCB = \frac{WL^2}{12} = \frac{10 \times 4^2}{12} = 13.33$ from

ps = [0 0]

Step : 6: proment transportmation matrice.

$$bx = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$$
Step : Assemble of force motions.

$$F = \frac{L}{6F^{\pm}} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

Example:

$$F = \frac{L}{6F^{\pm}} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

Example:

$$F = \frac{4}{6F^{\pm}} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

Example:

$$F = \frac{4}{6F^{\pm}} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

Spoon BC:

$$F = \frac{4}{6F^{\pm}} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

Spoon BC:

$$F = \frac{4}{6F^{\pm}} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

Spoon BC:

$$F = \frac{4}{6F^{\pm}} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

Spoon BC:

$$F = \frac{4}{6F^{\pm}} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

Spoon BC:

$$F = \frac{4}{6F^{\pm}} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

Spoon BC:

$$F = \frac{4}{6F^{\pm}} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

Spoon BC:

$$F = \frac{4}{6F^{\pm}} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

Spoon BC:

$$F = \frac{4}{6F^{\pm}} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

Spoon BC:

$$F = \frac{4}{6F^{\pm}} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

Spoon BC:

$$F = \frac{4}{6F^{\pm}} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

Spoon BC:

$$F = \frac{4}{6F^{\pm}} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

Spoon BC:

$$F = \frac{4}{6F^{\pm}} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

Spoon BC:

$$F = \frac{4}{6F^{\pm}} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

Spoon BC:

$$F = \frac{4}{6F^{\pm}} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

Spoon BC:

$$F = \frac{4}{6F^{\pm}} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

Spoon BC:

$$F = \frac{4}{6F^{\pm}} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

Spoon BC:

$$F = \frac{4}{6F^{\pm}} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

Spoon BC:

$$F = \frac{4}{6F^{\pm}} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

Spoon BC:

$$F = \frac{4}{6F^{\pm}} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

Spoon BC:

$$F = \frac{4}{6F^{\pm}} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

Spoon BC:

$$F = \frac{4}{6F^{\pm}} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

Spoon BC:

$$F = \frac{4}{6F^{\pm}} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

Spoon BC:

$$F = \frac{4}{6F^{\pm}} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

Spoon BC:

$$F = \frac{4}{6F^{\pm}} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

Spoon BC:

$$F = \frac{4}{6F^{\pm}} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

Spoon BC:

$$F = \frac{4}{6F^{\pm}} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

Spoon BC:

$$F = \frac{4}{6F^{\pm}} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

Spoon BC:

$$F = \frac{4}{6F^{\pm}} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

Spoon BC:

$$F = \frac{4}{6F^{\pm}} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

Spoon BC:

$$F = \frac{4}{6F^{\pm}} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

Spoon BC:

$$F = \frac{4}{6F^{\pm}} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

Spoon BC:

$$F = \frac{4}{6F^{\pm}} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

Spoon BC:

$$F = \frac{4}{6F^{\pm}} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

Spoon BC:

$$F = \frac{4}{6F^{\pm}} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

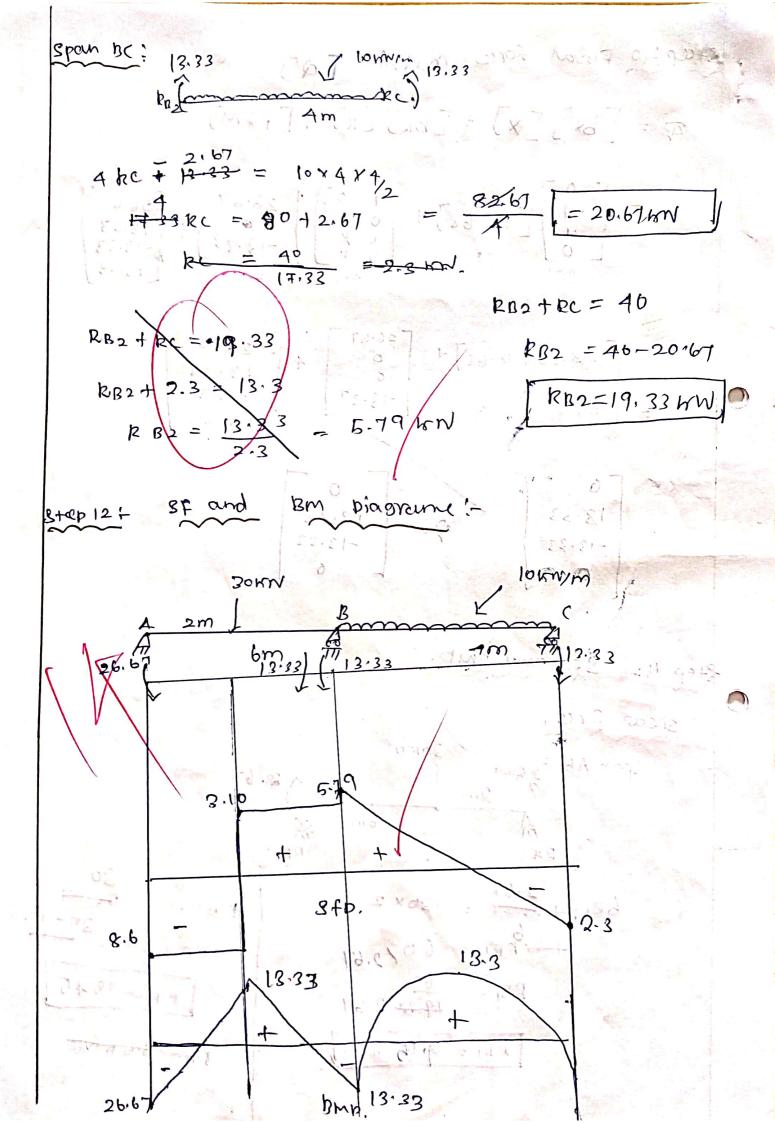
Spoon BC:

$$F = \frac{4}{6F^$$

$$X = \begin{bmatrix} 52 \\ 3.34 \end{bmatrix} \begin{bmatrix} 0.33 \\ 52 \end{bmatrix} \begin{bmatrix} 26.67 \\ 0 \\ -13.33 \end{bmatrix}$$

$$= \begin{bmatrix} 1.10 \end{bmatrix} \begin{bmatrix} 26.67 \\ 0 \\ -12.23 \end{bmatrix}$$

x = 14.68


exercise Final force. meating [A]

$$P = [bx][x] + [bx][x] + [fxm]$$

$$= \begin{bmatrix} 0 \\ 14.68] + \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 26.67 \\ -13.23 \\ -13.23 \end{bmatrix} + \begin{bmatrix} 26.67 \\ 13.23 \\ -13.23 \end{bmatrix}$$

$$= \begin{bmatrix} 0 \\ 13.33 \\ -13.23 \end{bmatrix}$$

$$= \begin{bmatrix} 0 \\ 13.23 \\ -13.23 \end{bmatrix}$$

Strep: 1 Caladate Static Indeterminates. bs= R-Y = 4-3 The Structure is statical determinancy 1st degree. MFAB = - WL = - 60x 6 = - 45 KWM WEBY = $\frac{8}{100}$ = $\frac{90\times9}{100}$ = $\frac{100\times90}{100}$ $MFBC = -\frac{\omega L^2}{12} = -\frac{20x}{12} = -\frac{60 \text{ keV/m}}{12}$ $MFCB = \frac{W^2}{12} = \frac{20x6^2}{1} = 60 \text{ km/m}^2$ Step 3! Internal Porto matrice [P] Q=[-45] Q= [-45] 45 -60 trep 1: textornal force matrix. R= \ 15 \ -60 \

apan BC

$$F = \begin{cases} 2 - 1 & 0 & 0 \\ -1 & 2 & 0 & 0 \\ -1 & 2 & 0 & 0 \\ 0 & 0 & 2 & -1 \\ 0 & 0 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{cases}$$

Step 0: anatembled forcematrix

$$Fxx = \begin{bmatrix} bx \end{bmatrix}^T \begin{bmatrix} F \end{bmatrix} \begin{bmatrix} bx \end{bmatrix}$$

$$= \begin{bmatrix} 0 - 1 & 1 & 0 \\ -1 & 2 & 0$$

Stop 6: froment grampod matio. Step 11: 85 and BM Span BB! brop = 60x3 ever in was one RD1= 1863 kb1= 301m 12A = 20mm 6xc1 = 20x6x6/2 RC = 60KN R12+12(=20x 6-RD 2=60 / hm af biggram boun 30 kg/ 33.3 90 90 30M BM

1. It The displacement forces in the structure are frectors as unknown.

He tre no 15 displacement oquations Involved is equal to me degree in static indeterminacy.

& The method is also called as force method,

D. Force brunspormation matrix

It is defined as connectivity matrix which is the internal force of and embrand force p.

Where, LOJ=[6][R].

Q= member some matric.

b = Force trenformation matthe

12 = External Porce matrix.

Static Indeterminary

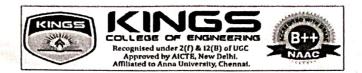
The excess no or reactions that marke the

Stracture ? nderminate is ir nown as 3 ratic Indeterminancy

Static inderminate = NO-06 reaction - equilibrium ontictions

Stifney matria!

or) The displacement in the structures are treated anymown


*) The displacement involved is equal to me degree of static memod is also freedom

storibility matrix co-efficient [ai)]

01 = moment force / J= displace ment due to

unit doad

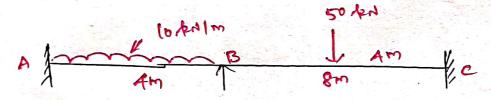
i= displacement force

DEPARTMENT OF CIVIL ENGINEERING ACADEMIC YEAR 2023-2024 (ODD SEM) CE3502 – STRUCTURAL ANALYSIS I REVISION TEST-3

Class: III /CIVIL Date & Session: 25.10.2023 (FN)

Max. Marks: 40 Time: 90mins

Answer all the questions


 $PART - A (5 \times 2 = 10 Marks)$

1. What is a rigid frame?

- 2. What is a primary structure?
- 3. Define stiffness coefficient.
- 4. Define the term rigidity of a structure.
- 5. What is the basic aim of the stiffness method?

$PART - B (2 \times 15 = 30 Marks)$

6. Analyze the continuous beam shown in the following figure by stiffness matrix method and draw the bending moment diagram.

7. Analyze the continuous beam shown in the figure by stiffness matrix approach.

Take EI constant throughout.

A 2m 1 B 20 AN/m C 6m 6m 6m

STAFF INCHARGE

HOD/CIVIL 2511012023

Name: Gr Sixohu.

Year : m

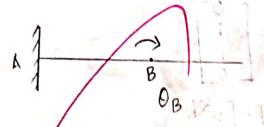
Branch: CIVIL

Sub : Sh I

Subcode: CE3502

Date : 25-10-23

Revision Test - %.


De vin Rut-B.

method: Stiffness

dalu:

Step 1:

colculate Kinematic Indeterminancy.

so there, the structure is simematic Indeterminancy

is 1 degrees.

consider 08 is known as independent

determinancy.

Step 2:

Calculate FEM:

MFAB =
$$\frac{-\omega L^2}{12} = \frac{-10 \times 4^2}{12}$$

= -13 33 kNm

= 13.33 kNm.

MFBC =
$$-\frac{\omega L}{8}$$
 = $-\frac{50x8}{8}$ = -50 LeNm .
MFCB = $\frac{\omega L}{8}$ = $\frac{50x8}{9}$ = 50 LeNm .

8tep 3:

Form the element cooldinate and Force [P°].

$$\begin{bmatrix}
-13.33 \\
13.33 \\
-50
\end{bmatrix}$$
Form the element cooldinate and Force [P°].

.8tep 4:

Form & matrix.

$$\begin{bmatrix} \beta \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} \beta \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 13.33 \\ -50 \end{bmatrix}$$

$$\begin{bmatrix} \beta \end{bmatrix} = \begin{bmatrix} -36.67 \end{bmatrix}$$

$$\begin{bmatrix} \beta \end{bmatrix} = \begin{bmatrix} -36.67 \end{bmatrix}$$

Step 5:

$$\begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix} t_{1} = EI \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix}$$

$$\begin{bmatrix} \frac{1}{4}EI \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix} t_{1} = EI \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix}$$

$$\begin{bmatrix} \frac{1}{4}EI \\ \frac{1}{8} & \frac{1}{4}EI \\ \frac{1}{8} & \frac{1}{8} \end{bmatrix} \begin{bmatrix} \frac{1}{4}EI \\ 0.5 \end{bmatrix} \begin{bmatrix} 0.5 \\ 0.25 \end{bmatrix}$$

$$\begin{bmatrix} \frac{1}{4}EI \\ \frac{1}{8} & \frac{1}{8} \end{bmatrix} \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix} \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix}$$

$$\begin{bmatrix} \frac{1}{4}EI \\ 0.5 \end{bmatrix} \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix} \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix}$$

$$\begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix} \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix}$$

$$\begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix} \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix}$$

$$\begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix}$$

$$\begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix} \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix}$$

$$\begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix}$$

Step 6:

Step 7:

Calculate Inverse stiffners Matrix [k-1]

[k-1] = 1.5ET

Calculate 8ystem displacement [v].
$$[v] = [K]' \{ [f^f] - [f^o] \}$$

$$= \frac{1}{1.5EI} \{ 0 - (-36.67) \}$$

$$\begin{bmatrix} 8 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}_{\mu \times \lambda}$$

$$= \underbrace{\begin{bmatrix} 0 \\ 24 \cdot 44 \end{bmatrix}}_{04 \cdot 44}$$

Calculate Final fouce
$$\begin{bmatrix} P^f \end{bmatrix}$$

$$\begin{bmatrix} P^f \end{bmatrix} = \begin{bmatrix} P^f \end{bmatrix} + \begin{bmatrix} P^0 \end{bmatrix}$$

$$= ET \begin{bmatrix} 12 \cdot 22 \\ 21 \cdot 144 \\ 12 \cdot 22 \\ 6 \cdot 11 \end{bmatrix} + \begin{bmatrix} -13 \cdot 33 \\ 13 \cdot 33 \\ -50 \\ 50 \end{bmatrix}$$

$$= ET \begin{bmatrix} 37 \cdot 77 \\ -37 \cdot 78 \\ 56 \cdot 11 \end{bmatrix}$$

810p 12:

Span AB

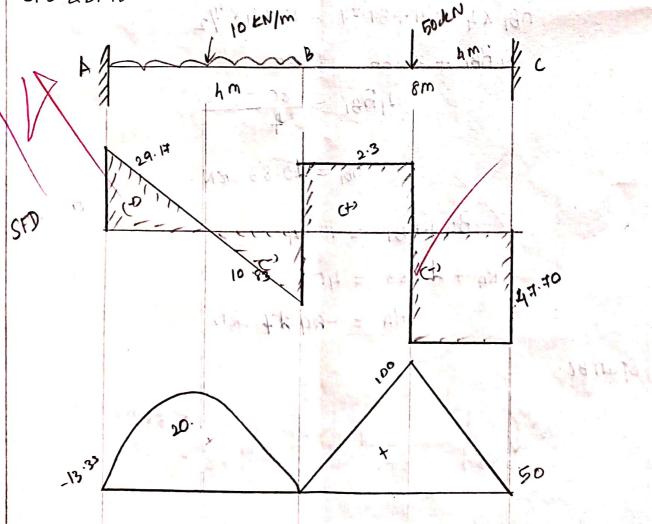
$$RB_{1} \times 4 - 1.11 + 37.77 = 10 \times 4 \times \frac{4}{2}$$

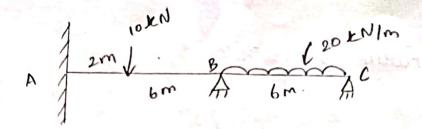
$$4 RB_{1} + 36.66 = 80$$

$$4 RB_{1} = \frac{80 - 36.66}{34}$$

$$\angle R_A + R_{B_I} = 10 \times 4$$

Span BC.

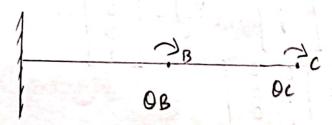

$$R_{c} \times 8 - 37.78 + 56.11 = 50 \times 8$$
 $8R_{c} + 18.33 = 400$
 $8R_{c} = \frac{400 - 18.33}{8}$
 $R_{c} = 47.70 \text{ LN}$
 $R_{b2} + R_{c} = 50$


$$R_{B2} + R_{C} = 50$$
 $R_{B2} + 47.70 = 50$
 $R_{B2} = 50 - 47.70$
 $= 2.3 \text{ kN}$

BM:

Span BC =
$$\frac{\omega J^2}{8} = \frac{10x4^2}{8} = 20 \text{ kN}.$$

SFD & BMD.



Solu:

Step 1:

Calculate Kinemalic Indeterminancy.

The structure is kinematic indéterminancy is a degree. Considered Op and Oc is system displacement.

Step 2:

Calculate FEM.

$$MFBA = \frac{-wab^2}{d^2} = \frac{-10x2x4^2}{b^2} = -8.89 \text{ ENm}.$$

$$MFBA = \frac{wa^2b}{d^2} = \frac{10x2^2x4}{b^2} = 4.44 \text{ ENm}.$$

MFBC =
$$\frac{-w l^2}{12}$$
 = $\frac{-20 \times 6^2}{12}$ = -60 kNm .
MFLB = $\frac{w l^2}{12}$ = $\frac{20 \times 6^2}{12}$ = 60 kNm .

Step 3:

Farm the element coordinate and Fare [PO].

$$8.89$$

$$\begin{bmatrix}
90 \\
-8.89 \\
4.44 \\
-60 \\
60
\end{bmatrix}$$

Form
$$\beta$$
 matrix
$$\begin{bmatrix} \beta^2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} \beta^2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} \beta \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} \beta \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} F \circ J = \begin{bmatrix} \beta J \cdot \lceil P \circ J \rceil \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} -8.89 \\ 4.4 & 4 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} -8.89 \\ 4.4 & 4 \end{bmatrix}$$

$$= \begin{bmatrix} -4.55.56 \\ 60 \end{bmatrix}$$

Step 5:

Form the element stiffness matrix [kn]
$$\begin{bmatrix}
A_{1} \end{bmatrix} = \begin{bmatrix}
\frac{4EI}{b} & \frac{2EI}{b} \\
\frac{2EI}{b} & \frac{4EI}{b}
\end{bmatrix} = EI$$

$$\begin{bmatrix}
0.66 & 0.33 \\
0.33 & 0.66
\end{bmatrix}$$

$$\begin{bmatrix}
A_{2} \end{bmatrix} = \begin{bmatrix}
\frac{4EI}{b} & \frac{4EI}{b} \\
\frac{2EI}{b} & \frac{4EI}{b}
\end{bmatrix} = EI$$

$$\begin{bmatrix}
0.66 & 0.33 \\
0.33 & 0.66
\end{bmatrix}$$

$$\begin{bmatrix}
A_{1} \end{bmatrix} = EI$$

$$\begin{bmatrix}
0.66 & 0.33 \\
0.33 & 0.66
\end{bmatrix}$$

$$\begin{bmatrix}
0.33 & 0.66 \\
0.33 & 0.66
\end{bmatrix}$$

$$\begin{bmatrix}
0.33 & 0.66 \\
0.33 & 0.66
\end{bmatrix}$$

$$\begin{bmatrix}
0.33 & 0.66 \\
0.33 & 0.66
\end{bmatrix}$$

$$\begin{bmatrix}
0.33 & 0.66 \\
0.33 & 0.66
\end{bmatrix}$$

$$\begin{bmatrix}
0.33 & 0.66 \\
0.33 & 0.66
\end{bmatrix}$$

$$\begin{bmatrix}
0.33 & 0.66 \\
0.33 & 0.66
\end{bmatrix}$$

$$= \frac{1}{EI} \begin{bmatrix} 0.33 & 0.66 & 0.66 & 0.33 & 17 \\ 0 & 0 & 0.33 & 0.66 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0.67 \\ 1 & 0 & 0 & 0.33 \\ 0 & 0 & 0.33 & 0.66 \end{bmatrix}$$

$$= \frac{1}{EI} \begin{bmatrix} 1.32 & 0.33 & 7 & 0.33 & 7 \\ 0 & 0.33 & 7 & 0.33 & 7 \end{bmatrix}$$

$$= \frac{1}{EI} \begin{bmatrix} 1.32 & 0.33 \\ 0.33 & 0.66 \end{bmatrix}$$

$$[J_1] = \frac{1}{[0.87 - 0]} = \frac{1}{[0.87 - 0]} = \frac{1}{[0.33]} = \frac{1}{[0.33]}$$

$$= \frac{1}{0.879} \begin{bmatrix} 0.66 & -0.33 \\ -0.33 & 1.32 \end{bmatrix}$$

$$= \frac{1}{0.879} \begin{bmatrix} 0.57 & -0.29 \\ -0.29 & 1.158 \end{bmatrix}$$

Step 9:

Calculate element displacement [8]

$$\begin{bmatrix}
8 \end{bmatrix} = \begin{bmatrix}
9 \end{bmatrix} \begin{bmatrix}
0 \\
1 \\
0 \\
1
\end{bmatrix}$$

$$= \begin{bmatrix}
0 \\
1 \\
0 \\
1
\end{bmatrix}$$

$$= \frac{1}{ET}
\begin{bmatrix}
0 \\
28 \cdot 62 \\
28 \cdot 62 \\
-52 \cdot 9
\end{bmatrix}$$

$$= \frac{1}{ET}
\begin{bmatrix}
0 \\
28 \cdot 62 \\
28 \cdot 62 \\
-52 \cdot 9
\end{bmatrix}$$

Step 10:

Calculate element force [P]

1. Rigid frame:

that Do not charge.

* Member can bending moment shear and axial

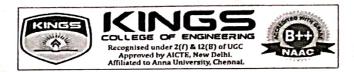
Primary structure

* Structure formed by removing the excess of reductant retaints from an indeterminate structure, statically determinate.

* Solving Indeterminate structure by flexibility matrix method.

3. Stiffress coefficient:

* Force developed at joint i due to unit displacement at joint; unbâle other joints are fixed.


* Constant K.

* Unit Force per wriet.

Rogidity of a stenders. * It does not bend or flex under an applied force. * The opposite of jugaclity is flexibility * Rigidity of structural element. Stiffness method

K = structures stiffness Matrix

R = model loads through the structural experitibility equation

ACADEMIC YEAR 2023-2024 (ODD SEM)

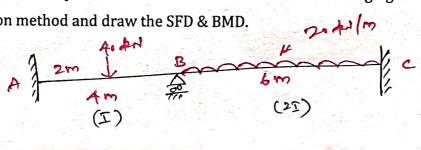
CE3502 - STRUCTURAL ANALYSIS I

REVISION TEST-4

Class: III /CIVIL Max. Marks: 40

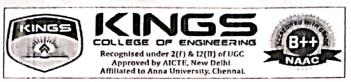
Date & Session: 15.11.2023 (FN)

Time: 90mins


Answer all the questions

 $PART - A (5 \times 2 = 10 Marks)$

- 1. Write down the slope deflection equations.
- 2. What is a sway frame?
- 3. List the causes for sway in portal frames.
- 4. Mention the assumptions made in finding forces in a frame.
- 5. What are the uses of slope deflection method?


$PART - B (2 \times 15 = 30 Marks)$

6. Analyze the two span continuous beam shown in the following figure by slope deflection method and draw the SFD & BMD.

7. Analyze the continuous beam shown in the figure by slope deflection method if joint B sink by 10mm and EI=4000 kNm².

HOD/CIVII

ACADEMIC YEAR 2023 - 2024 (ODD SEM)

Format A Assignment - I / II

Title

Each Student based on their lawing ability. (Activity list enclosed)

lawing ability. (Activity list enclosed)

To make the Students learn about the

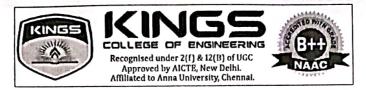
each Subject related anstrone

acc Subject related anstrone

Duizalize and Hot potatoes.

Evaluation is based on the

and presentation. (Evaluate


Objective

Evaluation

Date of Completion

05/09/2123

STAFF INCHARGE SIGN

: CE 3502 Sub. Code

Branch / Year / Sem : B.E CIVIL / III / V

Sub.Name

: Structural Analysis I

: 2021-2025

Batch

Staff Name : Mr.K.Arun

Academic Year

: 2023-24 (ODD)

ASSIGNMENT: 1 - PCE ACTIVITY EVALUATION SHEET

LEVEL-1 SLOW LEARNERS

L1-(Q1-Q4) QUIZ

	S.No	Roll.No	Student Name	Topic Name	No. of Ques: 20 Marks: 20 x 2	Total 40 Marks		
	1	6	MANIKKARAJ R	Determinate trusses	19 x2	38		
	2	7	MATHANKUMAR S	Rigid frames	19 x2	38		
	3	10	PASHAGAN G	Continuous beams	18×2	36		
-5	4	11	PRAGADISH M	Frames without sway	19×2	38		

L1-(Q5-Q7) SEMINAR

S.No	Roll.No	Student Name	Seminar Topic	PPT : 15 Marks	Presentation: 20 Marks	-	Total 40 Marks
5	12 PRASANNA R		Lack of fit	15	20	03	38
6	13	SARAVANAN K	Sway conditions	15	19	04	38
7	21	SANJAIMANI M	Analysis of Trusses	14	19	04	37

LEVEL-2 AVERAGE LEARNERS

L2-(Q8-Q11) APPLICATION OF CONCEPTS

S.No	Roll.No	Student Name	No. of Ques: 2 Marks: 2 x 20	Total 40 Marks	
8	2	ANITHA B	Slope deflection method	2×20	40
9	3	ARULPANDIYAN A	Moment distribution method	2×20	40
10	4	ARUNKUMAR M	Tension coefficient method	2×20	40
11	5	MADHAN D S	Deflection of frames	2×20	40

L2-(Q12-Q14) CROSSWORD

S.No	Roll.No	Student Name	Topic Name	No. of Ques: 20 Marks: 20 x 2	Total 40 Marks	
12	14	SURYA.V	Determinate trusses	2012	40	
13	16	VENKATACHALAM D	Rigid frames	20X2	40	
14	17	VIJAY S	Continuous beams	20X2	40	

LEVEL-3 ADVANCED LEARNERS

L3-(Q15-Q18) POSTER PRESENTATION

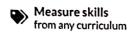
	S.No	Roll.No	l design ·		Presentation: 15 Marks		Total 40 Marks	
	15	1	AKALYA J	Types of trusses	20	15	05	40
	16	9	NAAVINIYAA G V	Types of beams	20	15	05	40
	17	19	SINDHU G	Types of loads	20	15	05	€0
*	18	20	SURUTHI A	Types of supports	20	15	05	40

L3-(Q19-Q21) GATE QUESTIONNAIRE

S.No	Roll.No	Student Name	Topic Name	No. of Ques: 20 Marks: 20 x 2	Total 40 Marks
19	8	MOHAN S	Method of joints	20 X 2	40
20	15	TAMILARASAN T	Method of sections	20 X 2	A0
21	18	MOHAMMED RIYAS J	Analysis of continuous beams	20 X 2	40

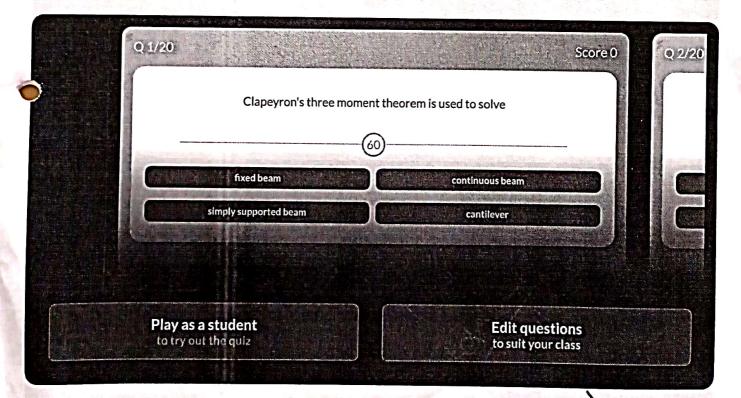
COURSE INCHARGE
(K.ARUN, AP/CIVIL)

HOD CIVIL (Dr.R.SARAVANAN)


CE3502 - STRUCTURAL ANALYSIS I - PCE ACTIVITY

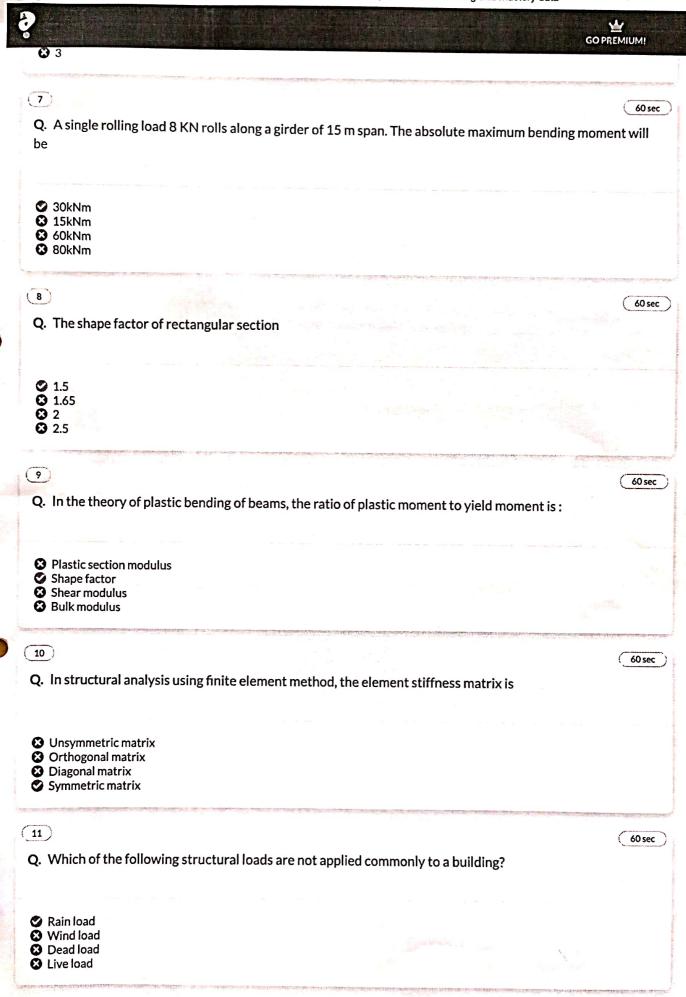
Quiz by Wincentre Classes

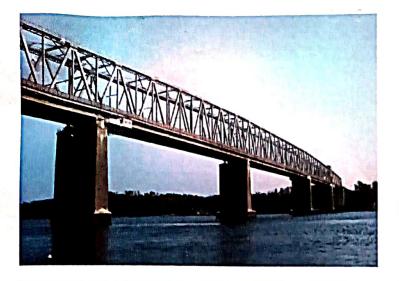
■In Your Library


Feel free to use or edit the questions

includes Teacher and Student dashboards

Tag the questions with any skills you have. Your dashboard will track each student's mastery of each skill.


- Lock quiz
- Make private
- Delete



20 questions

Hide answers

	SOPREMIUM!
 Two hinged arch Double Overhanging beam Continuous beam Fixed beam 	
(13)	60 sec
Q. Which of the following material is not used in making trusses?	
 Wood struts Concrete Metal Bars Channel 	
14)	60 sec
Q. Which structure will perform better during earthquake?	
 None of the above Statically indeterminate Statically determinate Depends upon magnitude of earthquake 	
15	(60 sec
Q. Which of the following is carried by truss members?	
 Axial load Bending load Flexural load Shear load 	
16)	(60 sec
Q. Which of the following methods for solving indeterminate structures are easiest for comp purposes?	utational
 Method of consistent deformation Displacement method Force method Moment area method 	
17)	(60 sec
O. The fixed support in a real beam becomes in the conjugate beam a	

ACADEMIC YEAR 2023-2024 (ODD SEM)
CE3502 — STRUCTURAL ANALYSIS

I PCE ACTIVITY - SEMINAR

ANALYSIS OF TRUSSES

Com 25/08/25

PRESENTATION BY
M.SANJAIMANI
III YR CIVIL
KCE

ANALYSIS OF TRUSSES

While analyzing a truss structure, a person needs to assume some things to keep things simple:

- 1.The joint is where the entire load is applied, and all other forces on the member are to be neglected.
- 2. The weight of a member is very insignificant to the amount of load that has been applied to it. Hence, it will not be considered in further calculations. However, some methods may take in account half of the weight of the member as acting on each individual joint of the member.

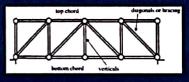
Truss Analysis

MAINLY THERE ARE ONLY TWO TYPES OF TRUSSES

- (1)Perfect truss
- (2)Imperfect truss
- (a)Deficient truss (b)Redundant truss
- (1)PERFECT TRUSS:-

A pin jointed truss which has get just sufficient number of embers to resist the load without under-going any deformation in shape is called a

perfect truss.


Triangular frames is the simplest perfect truss and has three joints and three members.

There is a mathematical formula by which we decide the given truss is perfect or imperfect

m=2j-r m=number of members J=number of joints R=number of support reaction component

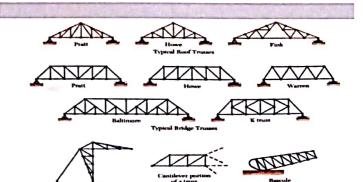
WHAT IS TRUSS?

- A truss is a structure comprising one or more triangular units constructed with straight members whose ends are connected at joints.
- If all the bars lie in a plane, the structure is a planar truss.
- The main parts of a planar truss.

(2)IMPERFECT TRUSS:

A truss which doesn't satisfies the relation m=2j-r is called an imperfect truss

Following are the two imperfect trusses.


a)Imperfect deficient truss:-

A truss which satisfies the relation m<2j-r is called a deficient truss. It is unstable and may collapse under external forces.

(b)Imperfect redundant truss:-

A truss which satisfies the relation m>2j-r is called a redundant truss.it can't be completely analysed by static equilibrium condition. Therefore it is an indeterminate structure

There are many types of trusses available here, I am showing some common types of trusses.

SPECIAL CASE:-

In general we should not cut more than three members because we have three equations of equilibrium to find three unknown, but in exceptional cases we found that, there are many members are collinear. Then in this condition more than three member can cut. After which choose a centre through which some moment becomes zero and required unknown calculated.

Advantage of section method:-

In section method we do not have to analyse the entire truss if any intermediate member force is desired to be obtained. It can directly be obtained by selecting proper position of section, so it is less time consuming as compare to joint method.

APPLICATION:

Trusses are usually designed to transmit forces over relatively long span. Common examples being bridge trusses, Roof trusses, Transmission tower etc... Truss is a building invent that allows the weight of a roof to be distributed to the outer walls for better support. Truss gives more support and allows the builders to use fewer materials to achieve any construction. It allows distribution of load. It increases the span of any construction like bridge or building.

CONCLUSION:-

After study about truss, I conclude that concept of trusses are very useful in our real life, because concept of truss are help us to make bridge, roof, and tower etc... so trusses are very useful for us.it also have some disadvantage. In truss bridge, it takes up more space and can some-times become a distraction to drivers. It also have higher maintenance demand of all joint and fitting more calculation to determine that it will take the maximum load. Determination of forces in member is carry out by two process, method of joint & section. By this we conclude forces in each member and at each joint. Truss play a vital role in our surrounding i.e. everywhere like in bridge, building, roof top, etc.

THANK YOU

->Assumption for a perfect truss:-

(i)All the members of truss are straight and connected to each other at their ends by

(a)All external forces are acting only at pins.

(3)All the members are assumed to be weightless.

(4)All the members of truss and external forces acting at pins lies in same plane. (5)Static equilibrium condition is applicable for analysis of perfect truss.

i.e.,

summation of f in x=0 summation of f in y=0

Summation of f in z=o

Summation of moment at one point =0

Two force member concept:-

By the assumption of perfect truss, all the members of truss should have straight .Connected to each other at their ends by frictionless pins and no external force is acting in between their joint, identifies each truss member as a two force member which may be in tension or compression.

The two common techniques for computing the internal forces in a truss are the "Method of joints" and "Method of sections".

Truss Analysis Method of joints

Procedure for method of joints:-

(1) For simply supported truss, consider the F.B.D of entire truss. Applying condition of equilibrium and find support reaction

(a) Consider the F.B.D of joints from the truss at which not more than two member with unknown force exists.

(3)Assume the member to be in tension or compression by simple inspections and applying condition of equilibrium.to find the answers.

(4)The assumed sense can be verified from the obtained numerical results . A positive answer indicates that the sense is correct and vice versa.

(5)Select the new F.B.D of joints with not more than two unknowns in a member and repeat the points 3,4 and 5 for complete analysis,

(6) Finally calculate the answer in required member magnitude of force and their nature.

Analysis in method of joints:-

While using the method of joints to calculate the forces in the member of truss, The

equilibrium equation are applied to individual joints of the truss.

Consequently two independent equilibrium equations are available for each joints.

i.e. summation of f in x=0 summation of f in y=0

Special conditions

Identification of zero force member by inspections(without calculation)
(1) If any joint is identified without external force acting on it such that joint is formed by three members and two of them are collinear, then the third non collinear member should be identified as zero force member.

(a) If any joint is formed by two non collinear members without any external force acting on it then both the members are identified as zero force members.

- (3)If any joint is formed such that only four forces are acting and are collinear in pairs then each collinear forces are equal.
- (4) If a given truss is symmetrical in geometry as well as in loading and support reactions are symmetrical then the forces in members on half side of symmetric is equal to the force in members on the other half.

Method of sections for trusses

Procedure for method of sections

(1) Consider the F.B.D of entire truss and find the support reactions applying equilibrium conditions.

(2) Select the cutting sections to cut the truss into two parts such that it should not cut more than three unknown members.

(3)Select the F.B.D of any one of the two parts considering all internal and external forces acting on that part.

4)Assume tension or compression in the cut members and applying equilibrium condition it's numerical values can be obtained. If the obtained values is negative, do the required change in nature of force.

(5) Though three equations of equilibrium are available

i.e.,

summation of f in x=o

summation of f in y=o

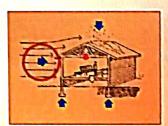
Summation of moment at one point =0

Preferable use "summation of \dot{M} =o" by selecting appropriate point for moment such that two known passes through that point . Moment of center may or ,may not lie on the F.B.D of truss.

(6)Do not consider the effect of uncut member in F.B.D.

LIVE LOADS

- Live Loads are not permanent and can change in magnitude.
- •They include items found within a building

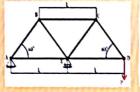

All the arrows indicate the live leads unless the

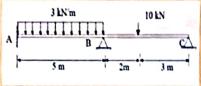
DEPARTMENT OF CIVIL ENGINEERING ACADEMIC YEAR 2021 2021 (ODD NEM) CE3502 — STRUCTURAL ANALYSIS I PCE ACTIVITY - SEMINAR LACK OF FIT & TYPES OF LOADS PRESENTATION BY R. PRASANNA III YR CIVIL KCE

LIVE LOADS

WIND LOAD:-

The wind's relatively large rojected areas can develop substantial forces in the structure.



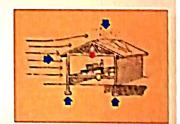

Wind load

LACK OF FIT

Lack of fit is an occurence in trusses/beams in which there is a difference between the length of a member and the distance between the nodes it is supposed to fit.

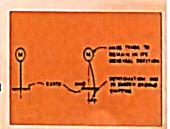
UThis happens because the connecting member is either too long or too short as compared to the distance between corresponding nodes.

LIVE LOADS


WIND LOAD:

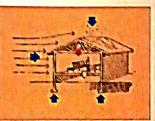
A covered bridge destroyed by wind

INTRODUCTION


- ·What are the loads?
- -Simply, loads are some sort of force.
- Major types of loads:
- 1.Dead loads. (red arrow)
- Exerted by the weight of the element of the structure.
- 2.Live loads, (rest arrow)
- Exerted by any temporary force acting on the structure

LIVE LOADS

EARTHQUAKE LOADS:

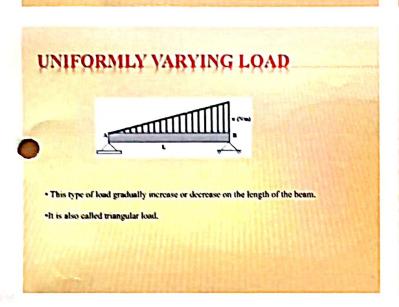

- Earthquake loads are another lateral live load.
- They are very complex, uncertain, and potentially more damaging than wind loads.

Mass tends to remain in its original position, deformation due to sudden ground moving take place at the base

REAR LOARS

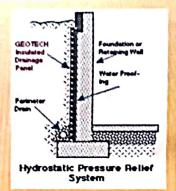
- Dead Loads are those loads which are considered to act permanently; they are "dead," stationary, and unable to be removed.
- The self-weight of the structural members normally provides the largest portion of the dead load of a building.

Exerted by the weight of the element of the

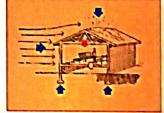

Load uniformly distributed on certain length of a beam is called uniformly distributed load. It is written as u.d.l. It is shown by w. Unit of u.d.l. is kN m or N/m.

LIVE LOADS

EARTHQUAKE LOADS:


 Buildings have been demolished by the earthquake loads, that happened because it have not been designed to deal with these loads. The earthquake was in Qamm in Iran.

HYDROSTATIC AND SOIL PRESSURE


- When building a wall, whether it is a basement wall or an outdoor retaining wall, it is necessary to make it strong enough to resist the pressure differential from the soil side to the open side.
- This pressure will consist of two elements:
 - Soil Pressure, which is a function of the soil depth and type.
 - •Hydrostatic pressure, which will be simply the depth of the wall times the density of water

THANK YOU

LOAD COMBINATION

- Designing steel or concrete structures involves considering combinations of load; therefore, most structural engineers are quite familiar with assessing the probability of various load combinations.
- As an example, it is unlikely that any bridge will need to resist full design vehicle load, design wind load, and the structure's self-weight simultaneously.

The load combination is clear in this figure, we can see the dead load and the live load including its tunds like weight of furniture and people, wind load and snow loads.

POINT LOAD OR CONCENTRATED LOAD

- The load concentrated at one point is called point load.
- •Unit of point load is N or

e.g. 20kN,100N etc.

W1

W2

В

W1 and W2 are point loads.

APPLICATION OF CONCEPTS

Tension Co-efficient Method

CE 3502 - Structwal Analysis

10 Seguent

NAME: M. Arrun Luman

class: un civic

ASSIGNMENT NO:1

0

0


Bub Ject: Structural

Bub code: CF3502

ROIL NO : 21CFO4

PATE : 04/09/2023

using bension co-efficient method, analysis
The plane from show in The fig. and find
The forces in The members.

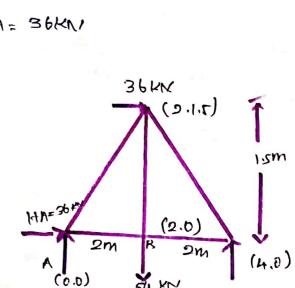
Step 1 :-

FM=0

=> Taking moment about A,

=> 54x2+36x1.5 -VCX4m=0

=> VC = HO. 5KN


5Fy = 0

=> VA+VC = 54 => VA= 18.5KN

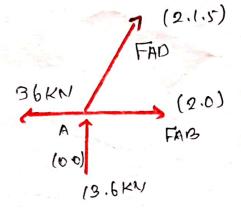
2 FM=0=> - HA +36=0 => HA= 36KN1

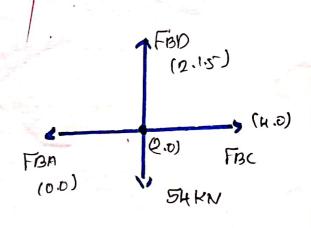
Step 2 ! -

let a is origin.

30 KN

54 KN

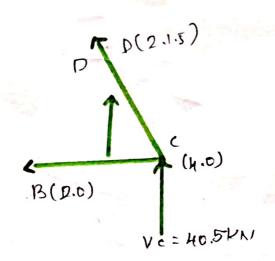

calculation of bension co-efficient:


Consider Joint A.

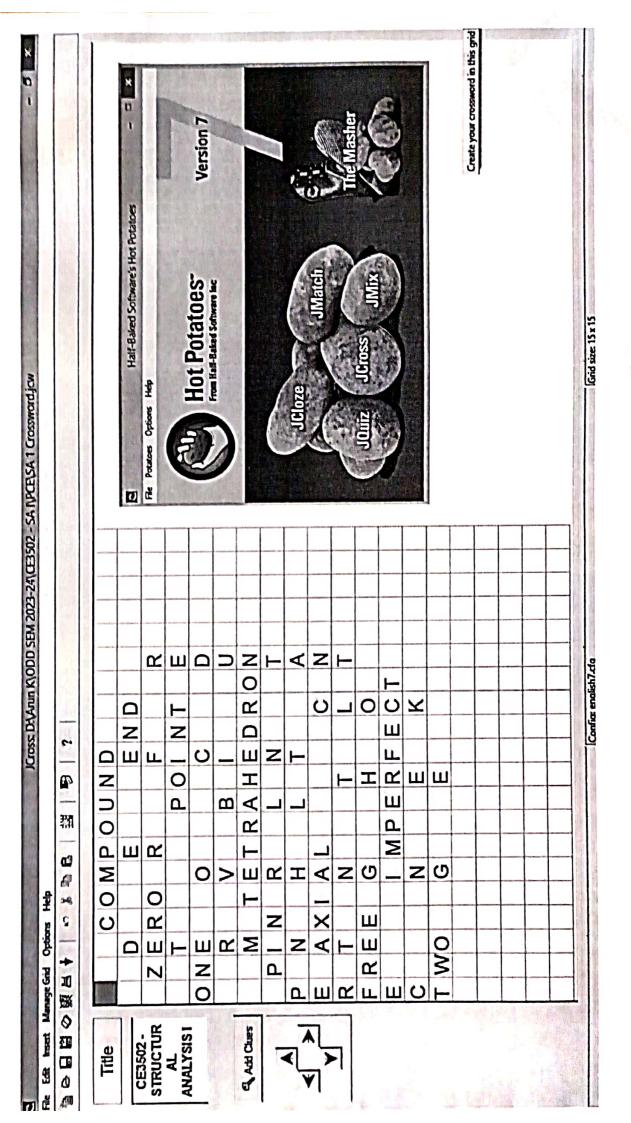
FAB = 27KKIM

Consider Joint B!-

=> 1BDX15 -54:0 => +BD= 36 KNIM


bmider Joint c:-

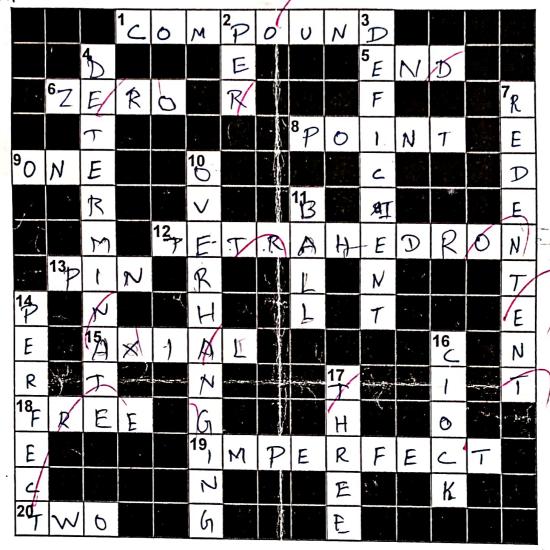
1 Fy = 0


=> tcp - yco + 40.5 =0

=> 15 to +40.5=0

=> {CD = D4 KN (M

foro in member by tension coefficient method:									
Memla 1	fig	Lig	Tigstigklig	Natur.					
AB	27	Q	5H KN	Tousibu					
BC	27	2	54KN	u					
CD	27	V 22+1+2= 25	67.5KV	(1)					
BR	- 9	8.5	- 225 km	compression					
ପଶ	96	1.5	54 KNI	Tousion.					


ACADEMIC YEAR 2023-2024 (ODD SEM)

CE3502 - STRUCTURAL ANALYSIS I - PCE ACTIVITY

STUDENT NAME: SURYAN

ROLL No: 21CE14

Crossword

Across:

A truss formed by joining two or more simple trusses is called ___ ____ moments are required for solving Fixed slope deflection equations Moment at a hinge will be equal to Concentrated load is also known as _ 8 The degree of freedom of space roller joint is 9 is the simplest element of a space 12 truss. 13 Hinge support is also known as ____ Truss members carry ___ 15 load In a beam, slope value will be ___ 18 the free end. If "n" is not equal to 2j-3, then the frame is called 19 _ frame. In general ____ equilibrium equations are needed 20 to solve each joint of a truss.

Down:

2	For UDI, loads are measured in loadlength
3	If n < 2j-3, then the frame is called as frame.
4	If the equilibrium conditions are enough to analyze a structure, then it is said to be statically
7	If n > 2j-3, then the frame is called as frame.
10	If a beam extends beyond its support, then it is called asbeam.
11	The type of joints used in space truss are and Socket Joint.
14 16	If n = 2j-3, then the frame is called as frame wise moments are positive.
17	The number of independent equations to be satisfied for static equilibrium of a plane structure is

ACADEMIC YEAR 2023-2024 (ODD SEM)

CE3502 - STRUCTURAL ANALYSIS I - PCE ACTIVITY

ROLL No: 82121103018 Crossword

•		200							/							
				1 _C	0	И	2	0	6	N	3					
			40	b							5	Ŋ	P		140	
		6 Z	E	P	0	捌					Ŧ	k.			7 ₽	7
1	100		+						8 P	0	1/	2	1		T	
	90	N	E	- 45		10 O) a		1		2				D	-
	*		P	n de la constitue de la consti	ke	٧	rinally decided sin	olicolomo attanzam	11 13	and the second	A				Æ	
-			M		12	E	1	P	A	Ŋ	E.	D	τ	0	N	
		13	1	P		p			1		CK	-temperature de la constitució de la c			7	
	14 P		m	j		12	an a	outrespont terrorism	L		T	e la termana a a a a		00.	E	
4	E	142.4	15 A	×	(A	Ĺ						16 	j.	2	
-	P		T			N			i.	17		197	1_	-	T	
	18 _F	e	#	E		G	at - Rantani	out an annual o		14	ar anger	,	o			
	E					19	М	P	E	R	F	E	C	T		
	c		one man of many and			Ŋ		, wany mun.		E			K			
	20 T	الم	0		THE PROPERTY AND ADDRESS OF THE PARTY AND ADDR	G	anaryonanya.	responses bounds	and the state of	E		,				

Across:

A truss formed by joining two or more simple trusses is called _____ Truss moments are required for solving slope deflection equations Moment at a hinge will be equal to Concentrated load is also known as The degree of freedom of space roller joint is is the simplest element of a space 12 truss. Hinge support is also known as ___ __ support. 13 Truss members carry load 15 In a beam, slope value will be _____ 18 the free end. If "n" is not equal to 2j-3, then the frame is called 19 ___ frame. In general ____ equilibrium equations are needed to solve each joint of a truss. 20

Down:

2 For UDI, loads are measured in load _____ length 3 If n < 2j-3, then the frame is called as ____ If the equilibrium conditions are enough to analyze a structure, then it is 4 said to be statically _ If n > 2j-3, then the frame is called as _ If a beam extends beyond its support, then it is called as _____ 10 11 The type of joints used in space truss are _____ and Socket Joint. 14 If n = 2j-3, then the frame is called as 16 _wise moments are positive. The number of independent equations to be satisfied for static equilibrium 17 of a plane structure is_

ACADEMIC YEAR 2023-2024 (ODD SEM)

CE3502 - STRUCTURAL ANALYSIS I - PCE ACTIVITY

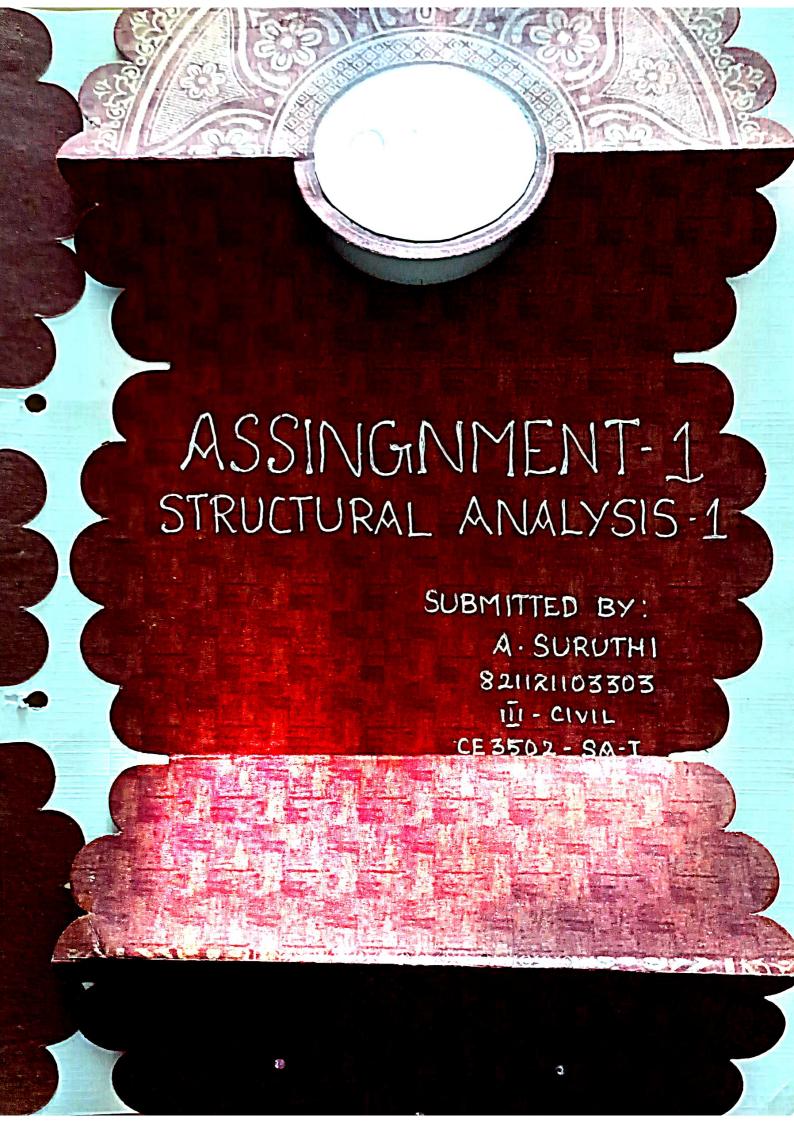
STUDENT NAME: VJAY'S

ROLL No: 21CE 17

Crossword

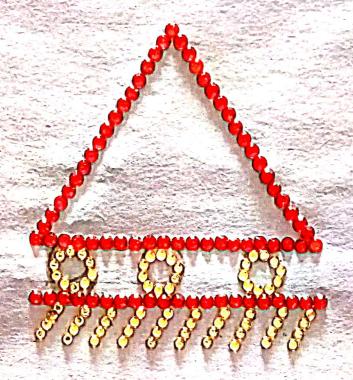
-										The same							
				1 _C	0	M	2	0	y	N	3 D						
			4 D	,			1				5 E	2	a	No.			
		6 _Z	E	R	0						F	Family 1 7 M			7 R		
	. _. ,		Т					- 14	8	0	1	2	٢		E		
	9 D	N	E			10 0			ز		c				D		
		. · ·	R			V			11 11		A				M		
			M		12	E	Т	R	Ħ	h	鞆	T	1	0	N	11G	
		13 P	1	N		R			L		N	-	. 7.	4.75	T	(AC)	
	14 P		2			4	74,)L		7				巨	. 10	
	E	7	15 2	78	(M	¥			1.7			16 C		N	la	
	R/		T			60	,			17 T			1		Τ	1AV	MM
	18 F	R	E	E		er				н /			0				
	E					19 T	M	P	巨	R	ŧ	E	С	T		٠, ٠	
	c					N				E			ĸ			=	
	20/	W	0			61	١		·	F		,	1				

Across:


1	A truss formed by joining two or more simple trusses is calledTruss
5	Fixed moments are required for solving slope deflection equations
6	Moment at a hinge will be equal to
8	Concentrated load is also known asload
9	The degree of freedom of space roller joint is
12	is the simplest element of a space truss.
13	Hinge support is also known as support.
15	Truss members carryload
18	In a beam, slope value will be at the free end.
19	If "n" is not equal to 2j-3, then the frame is called as frame.
20	In general equilibrium equations are neede to solve each joint of a truss.

Down:

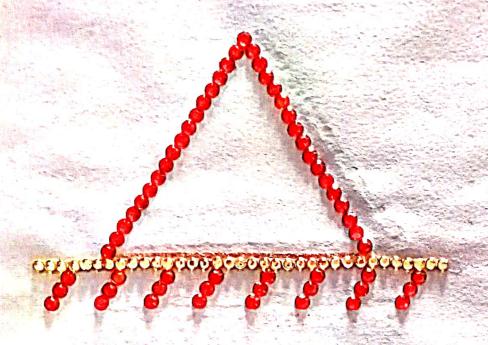
2


3 If n < 2j-3, then the frame is called as ______ frame. If the equilibrium conditions are enough to analyze a structure, then it is said to be statically If n > 2j-3, then the frame is called as _ If a beam extends beyond its support, then it is called as _ 10 11 The type of joints used in space truss are _____ and Socket Joint. 14 If n = 2j-3, then the frame is called as __ 16 _wise moments are positive. The number of independent equations to be satisfied for static equilibrium 17 of a plane structure is _

For UDI, loads are measured in load _____ length

POSTER PRESENTATION TOPIC TYPESOF SUPPORTS

1. ROLLER SUPPORT



* A gollen supposit allows gotation about any axis and translation (hasizontal movement) in any dispection parallel to the surface on which it seests.

*It suestonains the structure from movement in a vertical direction.

2 the idealized supresentation of a 2 stoller and its succession as also shown.

2. HINGED SUPPORT

*If the beam is supposted on hinge on pin then such a suppost is called as Hinged on pinned suppost

*In hinged suppost the beam cannot move in any objection.

*In hinged beam the succition may be verifical (VA), Haviszontal (HA) an Indined (R) depending upon the type of loading.

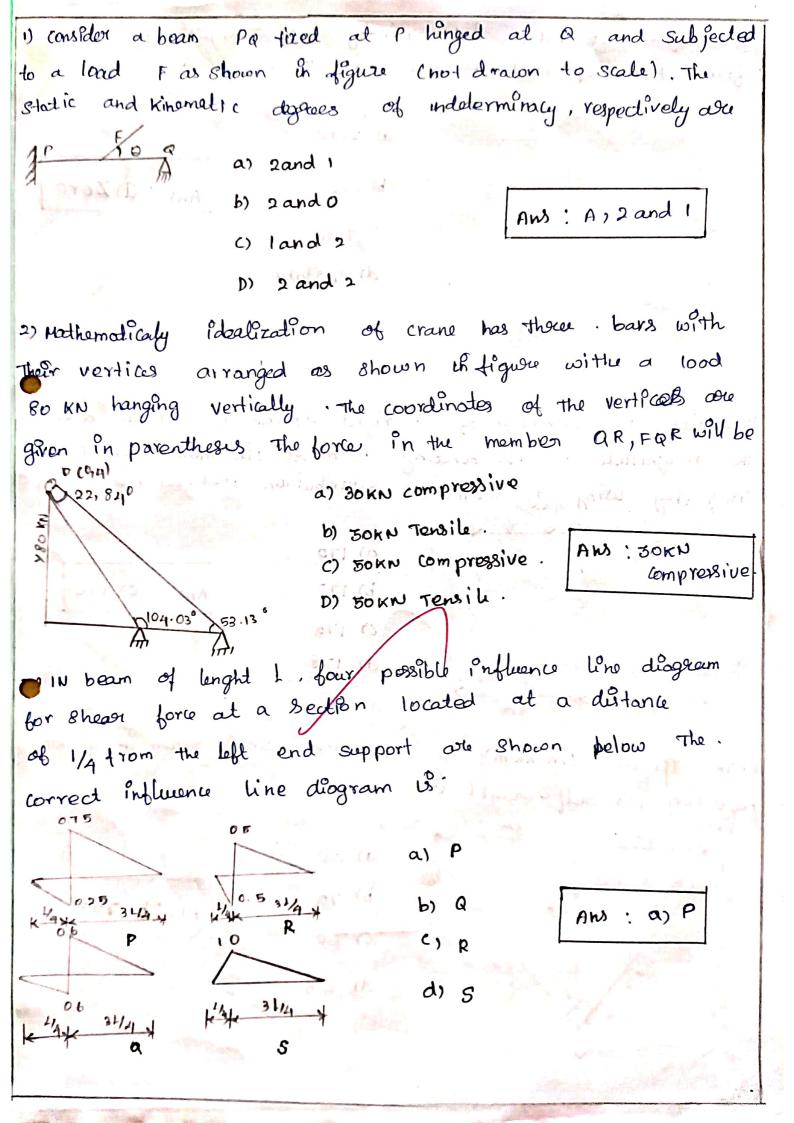
3. FIXED SUPPORT

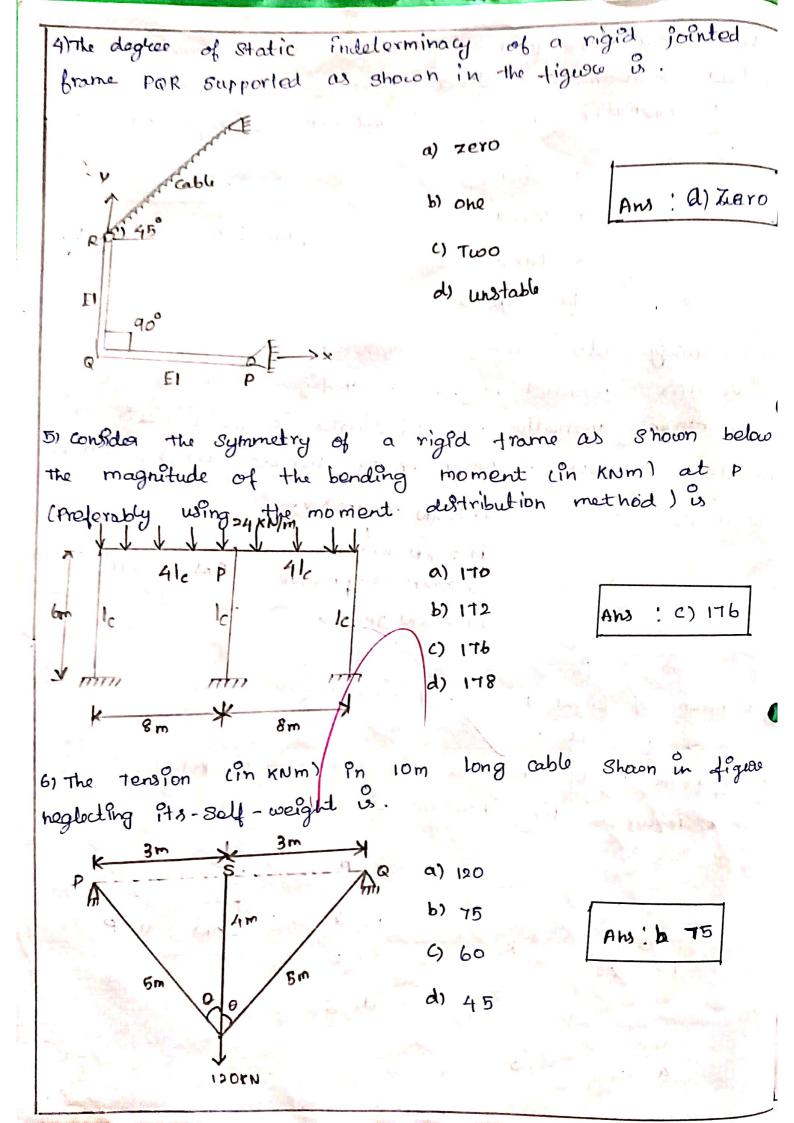
* If the end of the beam is fixed on built - in, then such a supposit is called as fixed supposit.

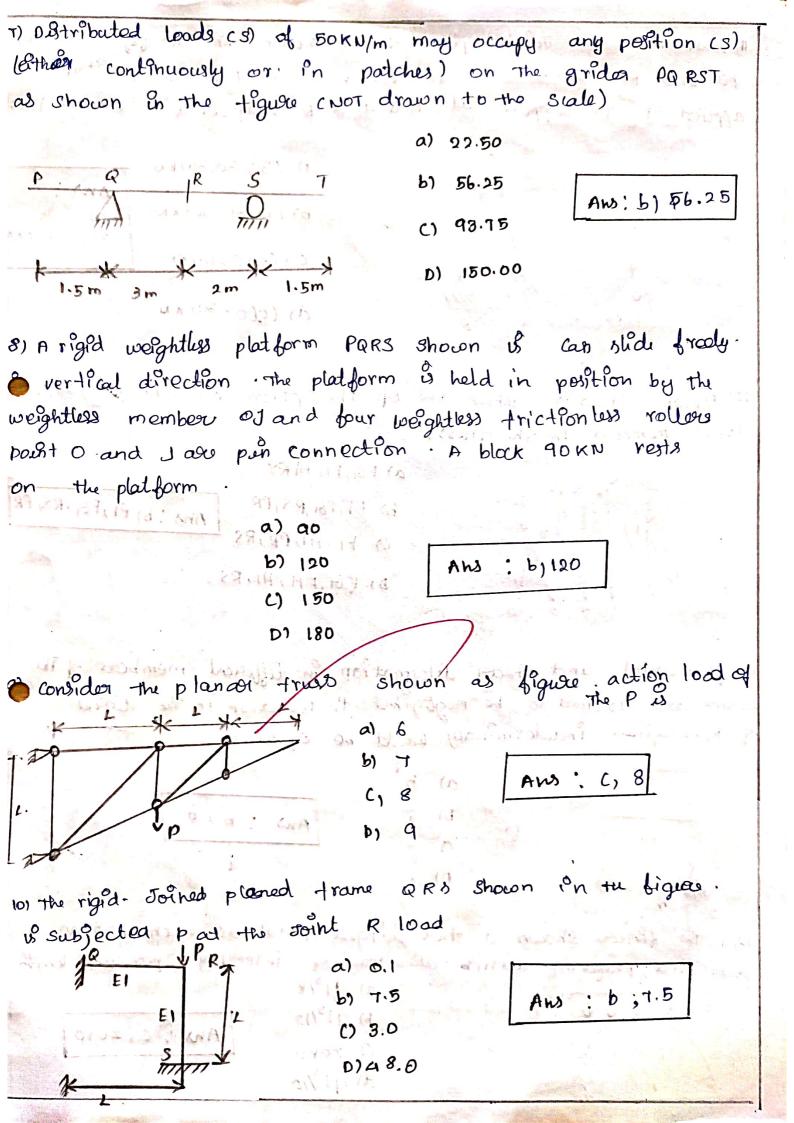
*In fixed supposit the sieaction may be verifical (VA). Hostizontal (HA) as inclined (R) and in addition there will be a moment (MA) acting at fixed ea end as shown.

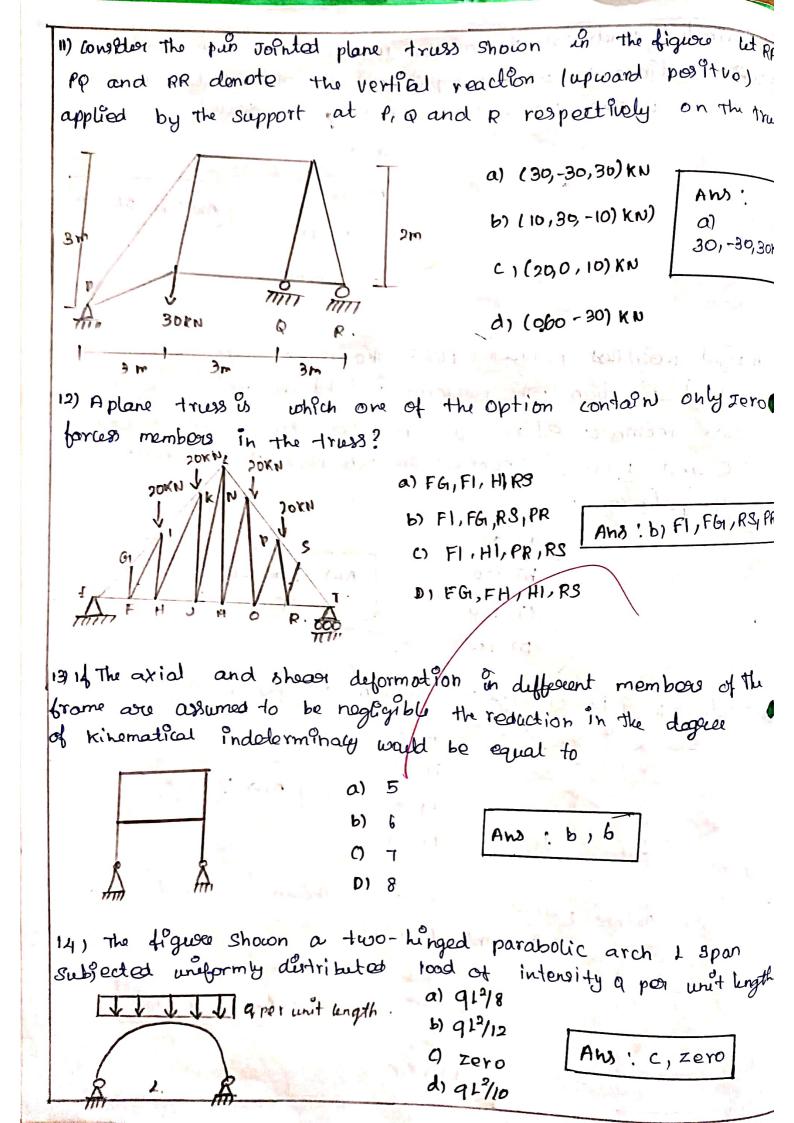
* It has three reaction.

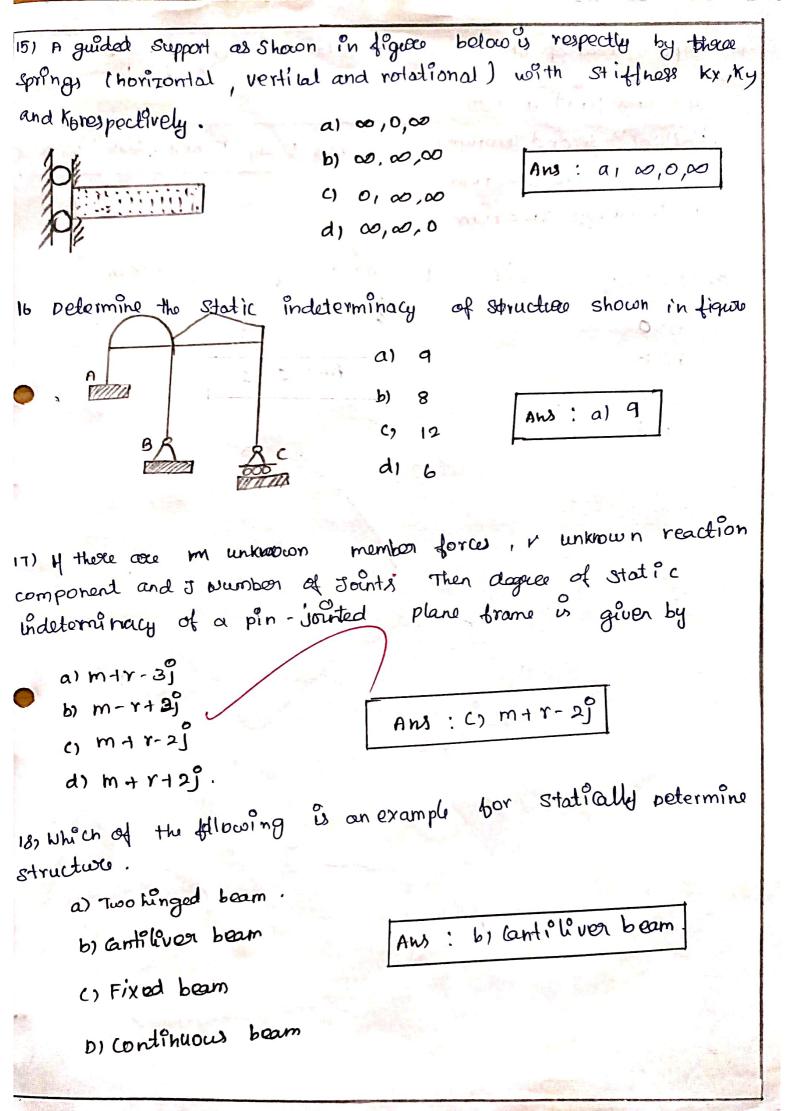
ASSIGNMENT-I GATE QUESTIONS

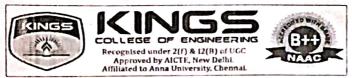



J. MOHAMED RIYAS


III YEAR CIVIL


CE3502


STRUCTURAL ANALYSIS-I



19) Slope = acca of BHD/EI is The relation given by: a) Hohr's first thorem Aws: a, Mohr's first Theorem b) Mohr's Second Theorem () castigiliano Theorem D) Hacualy's Theorem 20, pegree of kinematic indeterminancy of given beam is a) **b**) 3 Ans e., 2 c) 2 d) 1

ACADEMIC YEAR 2023 - 2024 (ODD SEM)

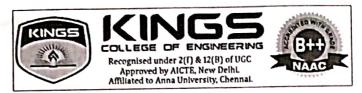
Format A

Assignment - I / IĬ

Title

: Individual activity is assigned to each Student based on their leaving ability.

(Activity list enclosed)


Objective

Evaluation

: * To make the Students lean about the Subject related Questions
Subject related Questions like * To use latest appe/softwares like * To use latest appe/softwares like * Ant potatous and Quizalize : Exclustion is based on the Questionais and presentation (Evaluation Sheet enclosed)

Date of Completion : 05 いわれ

STAFF INCHARGE SIGN

Sub. Code : CE 3502 Branch / Year / Sem : B.E CIVIL / III / V

Sub.Name

: Structural Analysis I

:2021-2025 Batch

Staff Name: Mr.K.Arun

Academic Year

: 2023-24 (ODD)

ASSIGNMENT: 2 - PCE ACTIVITY EVALUATION SHEET

LEVEL-1 SLOW LEARNERS

L1-(Q1-Q4) SEMINAR

	S.No	Roll.No	Student Name	Seminar Topic	PPT: 15 Marks	Presentation: 20 Marks	Q&A : 05 Marks	Total 40 Marks
	1	6	IMANIKKAKAIK	Formation of flexibility matrices	15	18	03	36
	2	7	IMAIHANKUMAKS	Formation of stiffness matrices	15	20	04	39
	3	10	PASHAGAN G	Primary structures	15	18	03	36
×	4	- 11	PRAGADISH M	Restrained structures	15	18	04	37

L1-(05-07) QUIZ

	S.No	Roll.No	Student Name	Topic Name	No. of Ques: 20 Marks: 20 x 2	Total 40 Marks
	5	12	PRASANNA R	Rigid jointed plane frames	19×2	38
	6	13	SARAVANAN K	Indeterminate frames	19×2	38
	7	21	SANJAIMANI M	Matrix method	18×2	36

LEVEL-2 AVERAGE LEARNERS

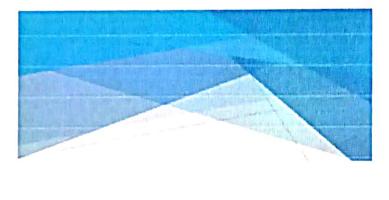
L2-(08-011) CROSSWORD

S.No	Roll.No	Student Name	Topic Name	No. of Ques: 20 Marks: 20 x 2	Total 40 Marks
8	2	ANITHA B	Symmetric frames	20×2	40
9	3	ARULPANDIYAN A	Skew symmetric loadings	20%2	40
10	4	ARUNKUMAR M	Lack of fit	20×2	40
11	5	MADHAN D S	Pin jointed plane frames	19×2	38

L2-(Q12-Q14) APPLICATION OF CONCEPTS

S.No	Roll.No	Student Name	Topic Name	No. of Ques: 2 Marks: 2 x 20	Total 40 Marks
12	14	SURYA.V	Carryover factor	20X2	40
13	16	VENKATACHALAM D	Sway conditions	20×2	A0
14	17	VIJAY S	Symmetric loadings	20×2	40

LEVEL-3 ADVANCED LEARNERS


L3-(Q15-Q18) GATE QUESTIONNAIRE

S.No	Roll.No	Student Name	Topic Name	No. of Ques: 20 Marks: 20 x 2	Total 40 Marks
15	1	AKALYA J	Stiffness method	2012	40
16	9	NAAVINIYAA G V	Flexibility method	20×2	40
17	19	SINDHU G	Analysis of trusses	20x2	40
18	20		Frames with sway and without sway conditions	20 × 2	40

L3-(Q19-Q21) POSTER PRESENTATION

S.No	Roll.No	Student Name	Poster Topic	Poster Topic design: 20 Marks		Q&A: 05 Marks	Total 40 Marks
19	8		Compatibility conditions	20	15	05	40
20	15		Equilibrium conditions	20	15	05	40
21	18	1.101111111	Distribution and carryover factors	20	15	05	40

COURSE INCHARGE (K.ARUN, AP/CIVIL) HOD CIVIL
(Dr.R.SARAVANAN)

DEPARTMENT OF CIVIL ENGINEERING

ACADEMIC YEAR 2023-2024 (ODD SEM)

CE3502 - STRUCTURAL ANALYSIS I PCE ACTIVITY - SEMINAR

STIFFNESS MATRIX
PRESENTATION BY

PRESENTATION BY
S.MATHAN KUMAR
III YR CIVIL
KCE

Topic: Analysis of Beam Stiffness Method

Outline

- > Introduction
 > Procedure
 > Properties
 > Types of supports

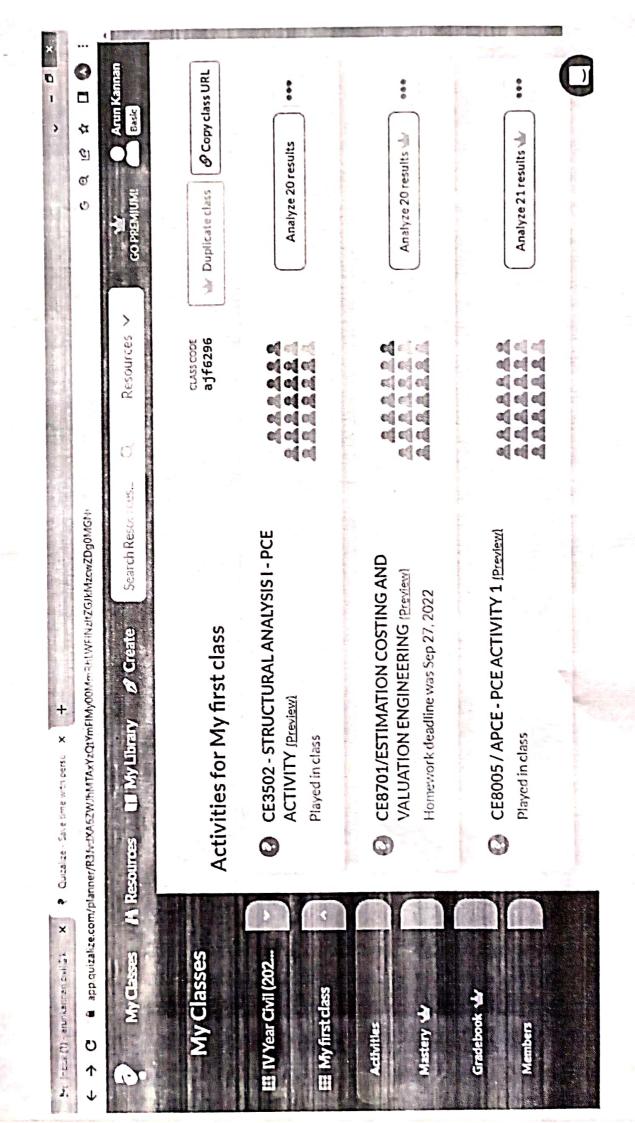
DEPARTMENT OF CIVIL ENGINEERING ACADEMIC YEAR 2023-2024 (ODD SEM)

CE3502 - STRUCTURAL ANALYSIS | PCE ACTIVITY - SEMINAR

TYPES OF STRUCTURES

PRESENTATION BY G.PASHAGAN III YR CIVIL KCE

YPES OF STRUCTURES AND LOADS lassification of Structures


It is important for a structural engineer to recognize the various type: of elements composing a structure and to be able to classify structures as to their form and function. We will introduce some of these aspects now and expand on them at appropriate points throughout the text.

'YPES OF STRUCTURES AND LOADS

The results of this analysis then can be used to redesign the structure accounting for a more accurate determination of the weight of the members and their size. Structural design, therefore, follows a series of successive approximations in which every cycle requires a structural analysis. In this book, the structural analysis is applied to civil engineering structures; however, the method of analysis described can also be used for structures related to other fields of engineering.

YPES OF STRUCTURES AND LOADS

A structure refers to a system of connected parts used to support a load. Important examples related to civil engineering include buildings, bridges, and towers; and in other branches of engineering, ship and aircraft frames, tanks, pressure vessels, mechanical systems and electrical supporting structures are important.

DEPARTMENT OF CIVIL ENGINEERING

ACADEMIC YEAR 2023-2024 (ODD SEM)

CE3502 - STRUCTURAL ANALYSIS I - PCE ACTIVITY

STUDENT NAME:

B. ANITHA

Crossword

			NAN	1
R	1.10	No t		

21	CED	2		1	<i>js</i> *									
1			10	0	M	2 p	0	U	N	3 _D				
	Y	47)				E				5 E	N	D		
	37	H	P	D	3/	P		^ ii		F				7 R
The Court		T					SE RESULTS I	8 p	0	7	N	T		E
9 0	N	E	-P		10		Pare USE allega			C	, .	1.12		Dr
1	* 14	P			Ý	esta, e il vacco		11 _B	N.	I	71 4			V
1	, Y	M	agalement varie	127	Ŀ	T	-R	Λ	H	F	D	R	0	N
	13 _p	I	N		R			L		N	ζ.,			T
14 ₀	a No.	N			Н			L		T			#1 = 7	Α
F	" N "	15/	χ	I	Λ	1	and the layer with the layer					16	To the same	N
R		T			N				17 _F			11	i Light	T
18,	P	E	E		GI			,	0	11.		0		
E	0 3	1		- асседениция	19 _/	М	P	E	R	F	E	C	T	VIE.
C	7				N				C			Ł		
20,	40	0			GI				E					718

100)

Across:

1	A truss formed by joining two or more simple trusses is called Truss
5	Fixed moments are required for solving slope deflection equations
6	Moment at a hinge will be equal to
8	Concentrated load is also known asload
9	The degree of freedom of space roller joint is
12	is the simplest element of a space truss.
13	Hinge support is also known as support.
15	Truss members carryload In a beam, slope value will be at
18	the free end.
19	If "n" is not equal to 2j-3, then the frame is called as frame.
20	In general equilibrium equations are needed to solve each joint of a truss.

Down:

2	For UDI, loads are measured in loadlength
3	If n < 2j-3, then the frame is called as frame.
4	If the equilibrium conditions are enough to analyze a structure, then it is said to be statically
7	If n > 2j-3, then the frame is called as frame.
10	If a beam extends beyond its support, then it is called asbeam.
11	The type of joints used in space truss are and Socket Joint.
14	If n = 2j-3, then the frame is called as frame.
16	wise moments are positive.
17	The number of independent equations to be satisfied for static equilibrium of a plane structure is
	· ·

ASSIGNMENT-2 GATE QUESTIONS

05/10/2023

G.V.NAAVINIYAA

III-YY CIVIL ENGG

CE 3502 - STRUCTURAL

ANALYSIS

- 1. Flexibility matrix method of a analysis is basically
 - 1. Force method
 - 2. Displacement method
 - 3. Equelibrium method
 - 4. None of the above
- 2. castigliano's theorem represents which one of the following methods?
 - 1. Equilibrium
 - 2. Flexibility
 - 3. Displacement
 - 4. Force
- 3. which of the following is the force method?
 - a) column analogy method
 - b) Flexubility matrix method
 - c) compatibility equation
 - d) stiffners matrix method
 - 1. a and b 3. a, b and c
 - 2. a, b, d 4. all of these

- 4° castigliano's theorem & falls under method.
 - 1º Stiffners
- 3. moment of distribution

2. force

- 4. displacement
- 5. Force method is also called as as per Structural analysis.
 - 1. slope deflection method
 - a. Kani's method
 - 3. Moment distribution method
 - 4° column analogy method
- b. In column analogy method, the area of an analogous column for a fixed beam of span 1 and flexwral rigidity FI is taken as
 - 1. L/EI
 - 2. L/2EI
 - 3. 1/4EI
 - 4. L/8EI

- A beam of span 5m, fixed at A and B, carries a point load of 50 kN at 2 m from A'. The fixed end moments at the supports A' and B' respectively, are
 - 1. 24 KNm dockwise and 36 kNm clockwise
 - 2. 24 KNm antillockwise and 36 KNm anticlockwise.
 - 3. 36 KNm clockwise and 24 KNm anticlocker
 - 4° 36 RNm antidockwise and 24 kNm dockwise.
- 8. which of the following methods of structural analysis is a force method?
 - 1. slope deflection method
 - 2. column analogy method
 - 3. moment distribution method
 - 4. None of the above

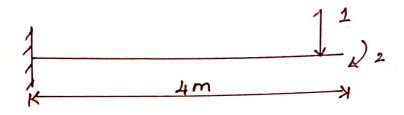
- 9. The theorem of three moments cannot be applied to
 - 1. continuous beams with over hangs
 - 2. Trusses and grames
 - 3. single span fixed beams
- 10. Flexebility matrisc method of a analysis
 - 1. Displacement method
 - a. Equilibrium method
 - 3. Force method
- 11. Which one of the following method is not classified as a force method?
 - 1. The theorem of three moments
 - 2. The Moments distribution method
 - 3. The method of consistent deformation
 - 4. castigliano's Theorem

- 12. A nigid cantilever frame ABC is loaded and supported as shown in the figure below. The horizontal displacement of point c is
 - 1. 2 ph 3 3 E I
 - $a \cdot \frac{Ph^2(2h+L)}{aEI}$
 - 3. <u>Ph ³</u> 3EI
 - $4^{\circ} Ph^{2} (h+L)$ 3EI
- 13. In column analogy method, the area of an analogous column for a fixed beam of span length 1 and blexweal signification is
 - 1. 0.251/CEI)
 - 2. 0.5 L (CEI)
 - 3. 0.75 L/(EI)
 - 4. L/(EI)

14° Force method in structural analysis always ensures

- 1. compatibility of deformation
- 2. Equelibrium of forces
- 3. kinematically admissible strains

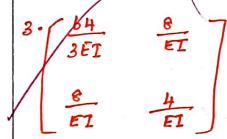
The flexibility matrix for the simply supported beam with reference to the coordinates, as shown below, is


$$a \cdot \frac{L}{3EI} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

3.
$$\frac{1}{6EI}$$
 $\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$

$$4 \cdot \frac{L}{3EI} \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$

- 16. In stiffners matrix method of structure analysis, the quantity taken as reduntant is
 - 1. Deflection
 - 2. Rotation
 - 3. Both (A) and (B)
 - 4. None of the above
- 17. For stable structures, one of the important properties of flexibility and stiffness matrices is that the element on the main diagonal.
 - i) of a stiffness mothis must be negative
 - il) of a stiffners matrix must be positive
 - ill) of a flexibility matrix must be positive
 - 1. (1) and (11)
 - 2. (i) and liv)
 - 3. (ii) and (iii)


18. The flexibility matrix of the beam shown below is

$$1 \cdot \begin{bmatrix} \frac{b4}{3EI} & \frac{8}{EI} \\ \frac{e}{EI} & \frac{1b}{EI} \end{bmatrix}$$

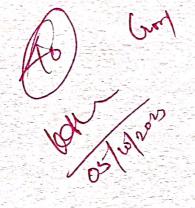
$$2. \int \frac{64}{3EI} \frac{-6}{EI}$$

$$\frac{-8}{EI} \frac{4}{EI}$$

19. The stiffness coefficients kij indicate

- 1. Deformation at j due to a unit jorce ati
- a. Force at i due to a unit deformation at j
- 3. Deformation at i due to a unit force at ;

20. The stiffness matrioc of a beam & given as $K = \begin{bmatrix} 12 & 4 \\ 1 & 5 \end{bmatrix}$ calculate the blexebility matrix · Flexibility matrix will be


$$2 \cdot \frac{1}{44} \begin{bmatrix} 12 & -4 \\ -4 & 5 \end{bmatrix}$$

$$3 \cdot \frac{k}{44} \begin{bmatrix} 12 & -4 \\ -4 & 5 \end{bmatrix}$$

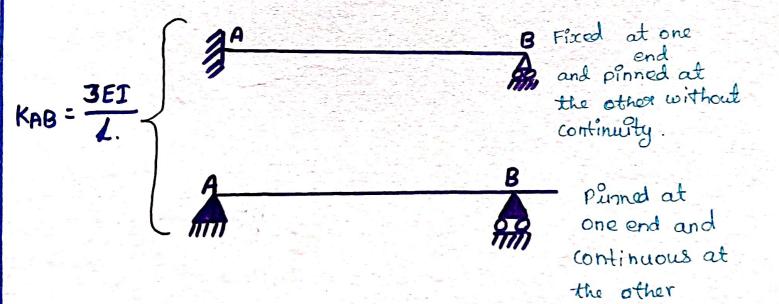
STRUCTURAL ANALAYSIS -I

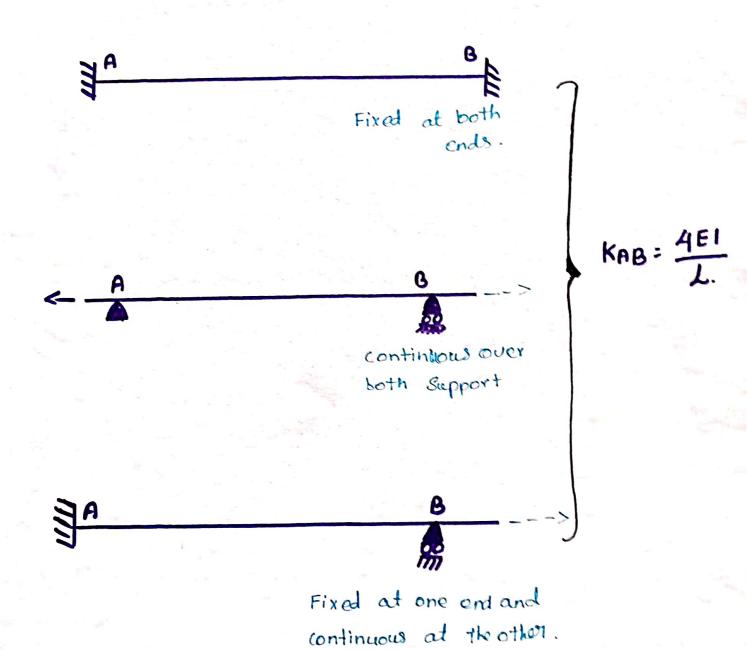
DISTRIBUTION AND CARRY OVER FACTOR

ASSICINMENTNO: 2

NAME: J. MOHAMMED RIVAS

CLASS: - 3rd YEAR CIVIL


808 :- SA-I


SUB CODE: - CE 3502

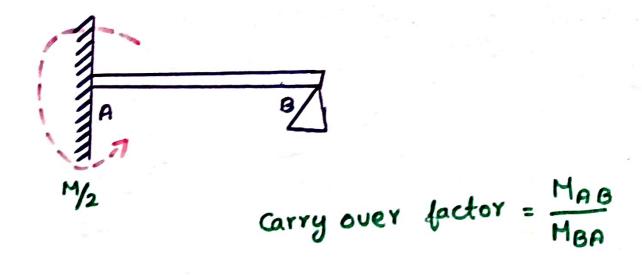
DATE - 05/19/2023

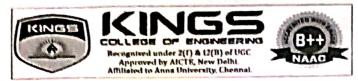
Datribution Factor:

The (DF) for a member at a Joint is the ratio of the stiffness (or relative stiffness) of The member to the total stiffness (or total relative stiffness) of all the members meeting at a joint

Carry Over Factor:

It is the Rolio of Homent


Transferred to the for end and moment


applied to the other end of the beam.

Distribution factor. This the factor by

Which moment at the junction of beam

is distribution to a beam.

DEPARTMENT OF CIVIL ENGINEERING ACADEMIC YEAR 2023-2024 (ODD SEMESTER)

CLASS: III YR CIVIL

SEM: V

NPTEL VIDEO SESSION REPORT

TITLE

: Analysis of determinate trusses

OBJECTIVE

: To make the students understand the about the analysis of

determinate trusses using method of joints.

METHODOLOGY

: Video

URL

: https://archive.nptel.ac.in/courses/105/105/105105166/

COVERAGE

•

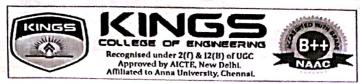
- Identify the determinate and indeterminate trusses.
- Analyse a determinate truss using method of joints.
- Concepts and step by step procedure for solving a determinate truss using method of joints.

NPTEL Session on "Analysis of determinate trusses" by Prof. Dr.Amit shaw, IIT Kharagpur

OUTCOME:

- Determinate and indeterminate structures were detailed.
- Students got an exposure about the analysis of determinate trus method of joints.
- They also learned about the analysis of truss using method of sections.

EVALUATION


: QUIZ

DATE OF COMPLETION

: 28.07.2023

COURSE IN-CHARGE

100/CIVIL

DEPARTMENT OF CIVIL ENGINEERING **ACADEMIC YEAR 2023-2024 (ODD SEMESTER)**

CLASS: III YR CIVIL

SEM: V

NPTEL Session on "Analysis of determinate trusses" **Mark Statement**

		iai k Statement	
R.NO	REG.NO	NAME	QUIZ (10)
1.	821121103001	AKALYA J	v
2.	821121103002	ANITHA B	b
3.	821121103003	ARULPANDIYAN A	٥٩
4.	821121103004	ARUNKUMAR M	09
5.	821121103006	MADHAN D S	08
6.	821121103007	MANIKKARAJ R	08
7.	821121103008	MATHANKUMAR S	09
8.	821121103009	MOHAN S	10
9.	821121103010	NAAVINIYAA G V	(O
10.	821121103012	PASHAGAN G (VOC)	•8
11.	821121103013	PRAGADISH M	08
12.	821121103014	PRASANNA R	09
13.	821121103015	SARAVANAN K	08
14.	821121103016	SURYA.V	10
15.	821121103017	TAMILARASAN T	10
16.	821121103018	VENKATACHALAM D	09
17.	821121103019	VIJAY S	10
18.	821121103301	MOHAMMED RIYAS J	
19.	821121103302	SINDHU G	10
20.	821121103303	SURUTHI A	w
21.	821121103701	SANJAIMANI M	08

COURSE IN-CHARGE

DEPARTMENT OF CIVIL ENGINEERING ACADEMIC YEAR 2023-2024 (ODD SEMESTER)

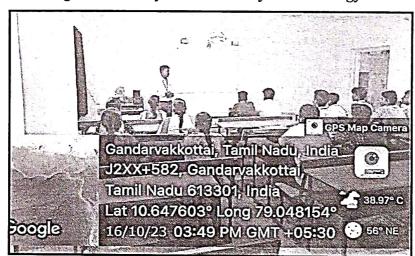
CLASS: III YR CIVIL SEM: V

CONTENT BEYOND SYLLABUS SESSION EXECUTION DETAILS

Subject Code / Title: CE3502 STRUCTURAL ANALYSIS I

Course Incharge : Mr.K.Arun, AP/CIVIL

Date of Execution : 16.10.2023


CBS Topic : Analysis of beams using strain energy method.

Objective

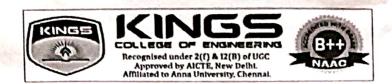
To know about the strain energy.

To learn about the analysis of beams.

To gain knowledge about analysis of beams by strain energy method.

CBS Session on "Analysis of beams using strain energy method."

EVALUATION


: Based on problem solving

OUTCOME

- Students learned about the strain energy.
- They got an idea about the different types of analysis of beams.
- Students got exposure about the analysis of beams using strain energy me

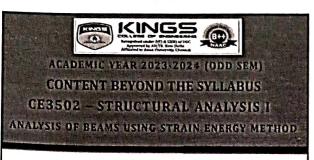
COURSE IN-CHARGE

HOD/CIVIL

DEPARTMENT OF CIVIL ENGINEERING ACADEMIC YEAR 2023-2024 (ODD SEMESTER)

CLASS: III YR CIVIL

SEM: V


CBS Session on "Analysis of beams using strain energy method."

Mark Statement

R.NO	REG.NO	NAME	Write up (10)
1.	821121103001	AKALYA J	10
2.	821121103002	ANITHA B	10
3.	821121103003	ARULPANDIYAN A	69
4.	821121103004	ARUNKUMAR M	8 0
5.	821121103006	MADHAN D S	08
6.	821121103007	MANIKKARAJ R	08
7.	821121103008	MATHANKUMAR S	08
8.	821121103009	MOHAN S	O
9.	821121103010	NAAVINIYAA G V	ιo
10.	821121103012	PASHAGAN G	08
11.	821121103013	PRAGADISH M	08
12.	821121103014	PRASANNA R	80
13.	821121103015	SARAVANAN K	98
14.	821121103016	SURYA.V	09
15.	821121103017	TAMILARASAN T	0)
16.	821121103018	VENKATACHALAM D	٥٩
17.	821121103019	VIJAY S	09
18.	821121103301	MOHAMMED RIYAS J	(0
19.	821121103302	SINDHU G	10
20.	821121103303	SURUTHI A	10
21.	821121103701	SANJAIMANI M	98

COURSE IN-CHARGE

R. Johnson 12023 HOD/CIVIL

16.10.2023

PRESENTATION BY ARUN.K AP/CIVIL

Strain Energy

- In mechanics, Energy is defined as the capacity to do work.
- In solid deformable bodies, the stresses multiplied by the respective areas are the forces and the deformation are the distances.
- The product of the force and deformations is the internal work done in a body by externally applied forces.
- The internal work done is stored in the body as the internal elastic energy of deformation or the elastic strain energy.

Conservation of energy, work and strain

 Conservation of energy is one of the basic law of physics and in a closed system consisting of a structure and the applied force must obeys this law.

 $W = E_s + E_l$

W = Work Performed

 $E_s = Energy$ stored in the body

 $E_1 = Energy loss$

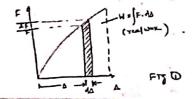
- Now in a structure, work is performed by the external load moving through a distance and the energy is stored due to elastic deformation of the members.
- If the structure is static there is no kinetic energy in the system with no energy loss due to heat, permanent set etc. The equation reduces to

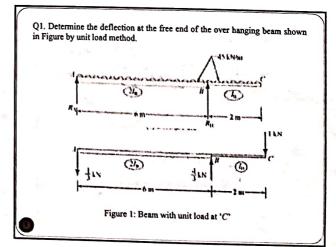
 $W = E_s$

E_s = Elastic strain energy also denoted by "U" Hence for a conservational structural system

W = U

Strain energy/unit volume = $u = 1/2 \times \sigma \times \epsilon$ Total Strain energy = $U = \frac{1}{2} \int \sigma \times \epsilon \times dv$


where, $\sigma = \text{stress}$, $\varepsilon = \text{strain}$

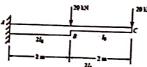

Real work and Complimentary work

- Work = Force × Displacement
- The work done as the force F moves through a distance $d\Delta$ $\Delta W = F \times d\Delta$

Total work done = $W = \int F \times d\Delta$

• If force "F" is three dimensional with components F_x , F_y and F_z Total work done $W = \int F_x \times d\Delta_x + \int F_y \times d\Delta_y + \int F_z \times d\Delta_z$ This work is known as Real work as shown in Fig. 1.

$$\Sigma_{1_s} = 0'$$
 fixes


 $R_A = 45 = 8 - 240 = 120 \text{ LN}$ • Find out the reactions, when unit load acting at 'C'

$$R_0 = \frac{1 \times 8}{6} = 1.333 \text{ kN}$$

 $R_A = 0.333 \text{ kN } \frac{1}{2}$

 Taking sagging moment as positive and hogging moment as negative, find out the expressions for moments in various portions of the beam due to external loading and unit force where the deflection is to be determined in a Tabular form.

-					
V	Parties	AB	<i>b€</i>	Q-11	1
	Ciripin	4	ť		
1	Link		0 - 2		
1	u =	120c- 1 × 42c2	-1 + est		
	13.1921	AND LIE	· 10 1754		4
	, A - j	(120v - 22.5e ²)(-4.35) E22 _e	(r)dr .] (-22.5s ²)(-	e) iii	
	-j	$\frac{\left(-20r^2+3.7r^2\right)dr}{D_q}\frac{1}{D_q}$) north		
		$\left[-\frac{26\pi^2}{3} + \frac{3.75\pi^4}{4} \right]$			
		$\frac{30 \times 6^1}{3} + \frac{3.75 \times 6^4}{4}$	+ <u>25×x</u>		
		7			1
	= <u>13</u>	. speed			

Q2. Determine the deflection and rotation at the free end of the cantilever beam shown in Figure by unit load method. Given $E = 200000 \text{ N/mm}^2$ and $I = 12 \times 10^6 \text{ mm}^4$

 Find out the deflection and rotation at the free end of the cantilever beam, apply unit load for deflection and unit moment for rotation at the free end of the beam as shown in Figure.

Figure 1: Beam with unit vertical load at 'C'

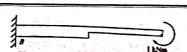


Figure 2: Beam with unit moment at 'C'

- The bending moment expressions can be calculated by
- M for external given load, m₁ for unit vertical load at 'C' and m₂ for unit moment at 'C' for various portion of cantilever beam and tabulated below.

Portion		× CB = -	Bi
Origin	4-	- C	
Limit	- 5	0-2	0-2
H		-20s	-[20 (2 + x) + 25x]
m t .			-(x + 2)
m2		-1	
1		4	2/.

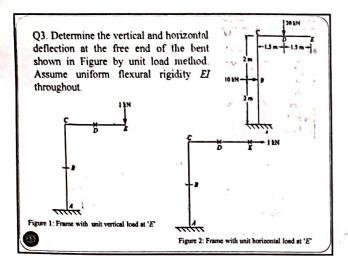
Vertical deflection at
$$C = \Delta = \int_{0}^{L} \frac{Mm_{h}}{EI} dx$$

$$= \int_{0}^{2} \frac{(-20x)(-x)}{EI_{0}} dx + \int_{0}^{2} \frac{[20(2+x)+20x](x+2)}{E2I_{0}} dx$$

$$= \int_{0}^{2} \frac{20x^{2}}{EI_{0}} dx + \int_{0}^{2} \frac{(40x+40)(x+2)}{2EI_{0}} dx$$

$$= \left[\frac{20}{3} \frac{x^{3}}{EI_{0}}\right]_{0}^{2} + \frac{1}{2EI_{0}} \left[\frac{40x^{3}}{3} + \frac{120x^{3}}{2} + 80x\right]_{0}^{2}$$

$$= \frac{53.333}{EI_{0}} + \frac{1}{EI_{0}} [253.333]$$


$$= \frac{306.67}{EI_{0}}$$

Rotation at 'C' =
$$\theta_0 = \int_0^L \frac{Mm_2}{EI} = \int_0^2 \frac{(20x)}{EI_0} dx + \int_0^2 \frac{(40x + 40)!}{E2I_0} dx$$

$$= \left[\frac{20}{EI_0} \frac{x^2}{2} \right]_0^2 + \frac{1}{EI_0} \left[\frac{40x^2}{2} + 40x \right]_0^2$$

$$= \frac{40}{EI_0} + \frac{160}{2EI_0}$$

$$= \frac{120}{EI_0}$$

• Find out the expressions in Tabular form for moment 'M' due to external loads, m_1 due to the unit vertical load present at the free end (Figure 1) and m_2 due to the unit horizontal load present at the free end (Figure 2) of the bent.

Portion	ED	DC	- CB	BA
Origin	E *	D	C	
Limit	0 - 1.5	0 - 1.5	0-2	0-2
м	0	-20r	-30	-30 -10x
101	. x	-(1.5 + x)	-3	-3
No.	. 0	0	-	-(x + 2)
Flexural Rigidity	E	EI	EI	EI 4

Note: Moment carrying tension on dotted side is taken as positive

Vertical deflection at
$${}^{4}E' = \Delta_{EV}$$

$$EI\Delta_{EV} = \int Mm_{1} dx$$

$$= 0 + \int_{0}^{1.5} 20x(1.5+x)dx + \int_{0}^{2} 90dx + \int_{0}^{2} (90+30x)dx$$

$$= \int_{0}^{1.5} (30x+20x^{2})dx + \int_{0}^{2} 90dx + \int_{0}^{2} (90+30x)dx$$

$$= \left[\frac{30x^{2}}{2} + \frac{20x^{3}}{3}\right]_{0}^{1.5} + [90x]_{0}^{2} + \left[90x + \frac{30x^{2}}{2}\right]_{0}^{2}$$

$$= 56.25 + 180 + 240$$

$$= 476.25$$

$$\Delta_{EV} = \frac{476.25}{EI}$$

Horizontal Deflection at 'E' =
$$\Delta_{EH}$$

$$EI\Delta_{EH} = \int Mm_2 dx$$

$$= 0+0+\int_0^2 30x dx + \int_0^2 (30+10x)(x+2) dx$$

$$= \left[15x^2\right]_0^2 + \int_0^2 (10x^2+50x+60) dx$$

$$= 60+\left[\frac{10x^3}{3}+50\times\frac{x^2}{2}+60x\right]_0^2$$

$$= 306.67$$

$$\Delta_{EH} = \frac{306.67}{EI}$$

THANK YOU

REVIEW SHEET

After Completion of syllabus
Faculty experience in handling / covering syllabus
Unit 1: This unit deals with analysis of townes by mother of juits and mother of Schain. Deflection can be leaved.
Sweet of frames and Superior configurates are least in this with
Unit III: This with cover the analysis of beams and frames by moment distribution method, steep are easy to Solve the publically: Elevibility method in volve motion equations (ship is dillight for the Part III
which is difficult for the Studente.
Unit V: Stiffness metrices melulus more steps to Solve and structs ful difficult to Solve the problems. Difficulties (if any)
Difficulties (if any)
Out IV and V involves more steps to folice
motives, Henre time Consumag).
Feedback on University Question Paper
Part - A - 8 Questions were asked is CAT I & CAT I
Part - B - Expected Questions and already practices
Post -c - 16 (a) is easy, FAR 16 (b) invilves more Steps with comparation
(6 (6) Invitues were Stops with a compilation
10 05/01/224 Bangjoi/2014.
SIGNATURE OF STAFF HOD/CIVIL

						 	 				ĺ
Reg. No.:	pr				١,	15		1			
neg. No	2	• -	'	100	-	 	 20		5.7	<u></u>	í

Question Paper Code: 20517

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2023.

Fifth Semester

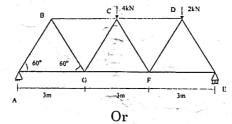
Civil Engineering

CE 3502 – STRUCTURAL ANALYSIS I

(Regulations 2021)

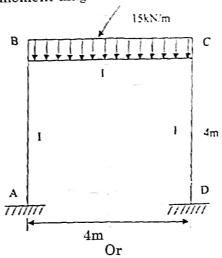
Time: Three hours

Maximum: 100 marks

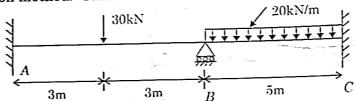

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

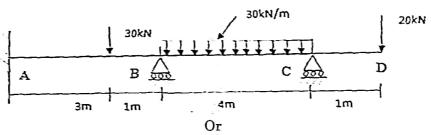
- 1. What are the different methods of analysis of truss?
- 2. Write the generalized formula for finding the deflection at the joint of the truss.
- 3. Give the slope deflection equation for the beam with end span is pin supported.
- 4. State the conditions when sway occurs in frames.
- 5. Define carry over factor.
- 6. Define distribution factor.
- 7. Write the generalized formula for flexibility method.
- 8. State the steps to be done to get the solution by flexibility method.
- 9. Write the generalized formula for stiffness method.
- 10. What is meant by degree of kinematic indeterminancy?

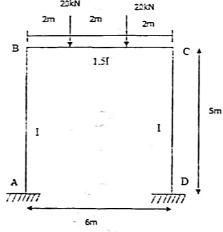

PART B —
$$(5 \times 13 = 65 \text{ marks})$$

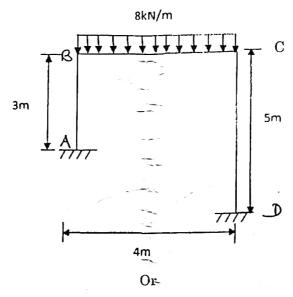
11. (a) Find the forces in the members AB, AG and BG by method of joints.

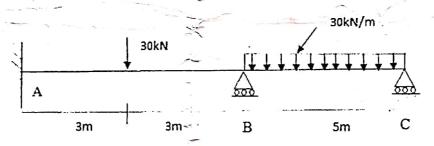


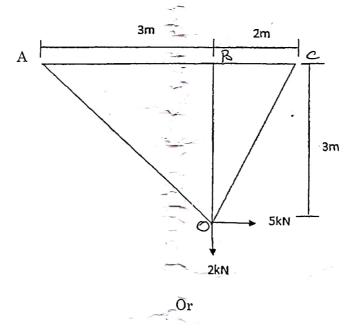
(b) Find the forces in the members CD and CF and FD shown in question 11.(a) by method of tension coefficient.

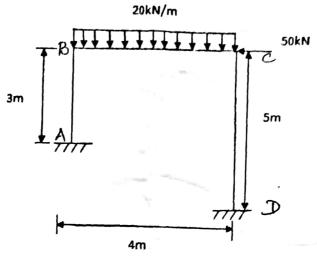

12. (a) Analysis the frame shown in figure given by slope deflection method and draw bending moment diagram.


(b) Analyse the continuous beam ABC shown in figure given below by slope deflection method. Take EI constant.

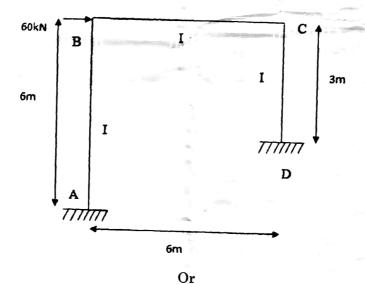

13. (a) Analyse the beam by moment distribution method.


(b) Analyse the frame by moment distribution method.

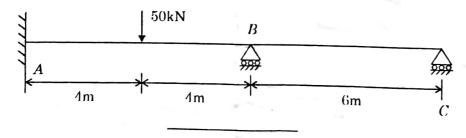

14. (a) Determine the support reactions on the frame by flexibility method.

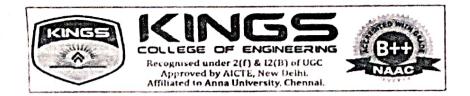

(b) Analyze the continuous beam shown in figure by flexibility method.

15. (a) Analyse the truss by stiffness method.



(b) Analyse the frame by stiffness method.




PART C — $(1 \times 15 = 15 \text{ marks})$

16. (a) Analyze the frame shown in figure by moment distribution method.

(b) Analyse the continuous beam ABC shown in figure given below, if support B sinks by 10 mm by flexibility matrix method. Take $EI = 6000 \, kNm^2$.

		,		TES	TEST REPORT -ODD SEMESTER 2023-2024									
Department CIVIL EN					NGINE	ERING				Year/Section	TI CIVIL			
Name of the subject & Code CE 3502 -							_ An	יראנוז	Ī	Name of the Staff	K. ARUN			
Test		No.	of.Studen	ts			Reason for poor	Corrective	Signature	Signature	PRINCIPAL			
Test	Date	Total	Appeared	Absent	Passed	Pass %	60-80	81-100	performance	action	of staff	of HOD		
Assessment Test -1	16/9/23	21	15	ОЬ	05	33.3%	1	_	more absentering during classes on Exams	2 years	22/09/23	J. hwaren	22/9/25	
Assessment Test -2	21/10/2	21	21	b	04	19.7.	1	_	Andlem oriented subject. Students full difficult to solve problems in time	Problems given for practice. Craeming classes	03/11/25		2.100 11/12	
Model Exam	-	-	-	-	_	_	-	-	_	will be londer	_	_	_	
AU Exam	05/012	21	21	_	11	52-41)	. 6	-	Frequency about student were feriled in exame	1 Strauts applier for peraluation	13/04/14	3 Factor	A	

Note: - Report should be retained by HOD concerned